default search action
Tad A. Kwasniewski
Person information
- affiliation: Carleton University, Ottawa, Canada
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2010 – 2019
- 2017
- [c51]Leonard MacEachem, Xin-Jie Wang, Tad A. Kwasniewski:
On-die power grid broadband model determination using a priori narrowband measurements. MWSCAS 2017: 1493-1496 - 2016
- [j12]Xinjie Wang, Tadeusz Kwasniewski:
A reduced reference spur multiplying delay-locked loop. Int. J. Circuit Theory Appl. 44(8): 1620-1627 (2016) - 2015
- [c50]Haizheng Guo, Tadeusz Kwasniewski:
A DLL-based period synthesis. CCECE 2015: 103-106 - [c49]Haizheng Guo, Tadeusz Kwasniewski:
A DLL fractional M/N frequency synthesizer. CCECE 2015: 114-117 - [c48]Zhe Jiang, Haizheng Guo, Tadeusz Kwasniewski:
Low noise CMOS voltage-control oscillator design methodology with emphasis on non-linear effect contributions, 2.4 GHz CMOS design example. CCECE 2015: 686-690 - 2013
- [c47]Haizheng Guo, Xinjie Wang, Tadeusz Kwasniewski:
Spur analysis and reduction of edge combining DLL-based frequency multiplier. CCECE 2013: 1-4 - 2012
- [c46]Haizheng Guo, Tad A. Kwasniewski:
A DLL-based fractional-N frequency synthesizer with a programmable injection clock. CCECE 2012: 1-4 - [c45]Chao He, Tadeusz Kwasniewski:
Bang-Bang CDR's acquisition, locking, and jitter tolerance. CCECE 2012: 1-4 - [c44]Chao He, Tadeusz Kwasniewski:
A novel fractional-N PLL architecture with hybrid of DCO and VCO. CCECE 2012: 1-4 - 2011
- [c43]Harry Tai, Peter Noel, Tad A. Kwasniewski:
A reduced signal feed-through 6-tap pre-emphasis circuit for use in a 10GB/S backplane communications system. SoCC 2011: 114-117 - 2010
- [j11]Huong Ho, Valek Szwarc, Tad A. Kwasniewski:
Low Complexity Reconfigurable DSP Circuit Implementations Based on Common Sub-expression Elimination. J. Signal Process. Syst. 61(3): 353-365 (2010) - [c42]Haizheng Guo, Bo Wang, Bangli Liang, Tad A. Kwasniewski, Robert Sobot:
Optimized LNA for analog RF front-end circuit in brain-machine interface. WCNIS 2010: 147-150
2000 – 2009
- 2009
- [j10]Huong Ho, Valek Szwarc, Tad A. Kwasniewski:
A Reconfigurable Systolic Array Architecture for Multicarrier Wireless and Multirate Applications. Int. J. Reconfigurable Comput. 2009: 529512:1-529512:14 (2009) - [j9]Lei Zhang, Tadeusz Kwasniewski:
FIR filter optimization using bit-edge equalization in high-speed backplane data transmission. Microelectron. J. 40(10): 1449-1457 (2009) - [j8]Qingjin Du, Jingcheng Zhuang, Tad A. Kwasniewski:
A Low-Power, Fast Acquisition, Data Recovery Circuit With Digital Threshold Decision for SFI-5 Application. IEEE Trans. Very Large Scale Integr. Syst. 17(12): 1742-1748 (2009) - [c41]Bangli Liang, Zhigong Wang, Dianyong Chen, Bo Wang, Guohui Situ, Tad A. Kwasniewski:
A full-rate truly monolithic CMOS CDR for low-cost applications. CCECE 2009: 1208-1212 - [c40]Dianyong Chen, Bo Wang, Bangli Liang, Tad A. Kwasniewski:
A 10-Gb/s backplane transmitter with a FIR pre-emphasis equalizer to suppress ISI at data centers and edges simultaneously. CCECE 2009: 1213-1216 - [c39]Bo Wang, Dianyong Chen, Bangli Liang, Jinguang Jiang, Tad A. Kwasniewski:
A programmable pre-cursor ISI equalization circuit for high-speed serial link over highly lossy backplane channel. CCECE 2009: 1221-1226 - [c38]Bangli Liang, Dianyong Chen, Bo Wang, Guohui Situ, Tad A. Kwasniewski, Zhigong Wang:
A monolithic high modulation efficiency CMOS laser diode / modulator driver. ICT 2009: 361-363 - [c37]Bo Wang, Dianyong Chen, Bangli Liang, Jinguang Jiang, Tadeusz Kwasniewski:
Modeling, Simulation and Analysis of High-Speed Serial Link Transceiver over Band-Limited Channel. UKSim 2009: 574-578 - [c36]Dianyong Chen, Bo Wang, Bangli Liang, Tadeusz Kwasniewski:
A Simulator for High-Speed Backplane Transceivers. UKSim 2009: 589-593 - 2008
- [c35]Tingjun Wen, Tadeusz Kwasniewski:
Phase Noise Simulation and Modeling of ADPLL by SystemVerilog. BMAS 2008: 29-34 - [c34]Bangli Liang, Tad A. Kwasniewski, Dianyong Chen:
A 42-Gb/s Decision Circuit in 0.13µm CMOS. CNSR 2008: 339-342 - [c33]Miao Li, Tad A. Kwasniewski, Shoujun Wang:
A 0.18-µm CMOS clock and data recovery circuit with reference-less dual loops. ISCAS 2008: 2358-2361 - [c32]Ramin Shariat-Yazdi, Tad A. Kwasniewski:
Low complexity sphere decoding algorithms. ISWCS 2008: 438-442 - [c31]Ramin Shariat-Yazdi, Tad A. Kwasniewski:
A multi-mode sphere detector architecture for WLAN applications. SoCC 2008: 155-158 - 2007
- [j7]Dianyong Chen, Wei Wang, Tadeusz Kwasniewski:
Design Considerations for a Direct RF Sampling Mixer. IEEE Trans. Circuits Syst. II Express Briefs 54-II(11): 934-938 (2007) - [c30]Jingcheng Zhuang, Qingjin Du, Tad A. Kwasniewski:
A 4GHz Low Complexity ADPLL-based Frequency Synthesizer in 90nm CMOS. CICC 2007: 543-546 - [c29]Ramin Shariat-Yazdi, Tadeusz Kwasniewski:
Dual Mode K-Best MIMO Detector Architecture and VLSI Implementation. ICECS 2007: 735-738 - [c28]Muhammad Usama, Tad A. Kwasniewski:
A 40 GHz Quadrature LC VCO and Frequency Divider in 90-nm CMOS Technology. ISCAS 2007: 3047-3050 - 2006
- [j6]Qingjin Du, Jingcheng Zhuang, Tad A. Kwasniewski:
A Low-Phase Noise, Anti-Harmonic Programmable DLL Frequency Multiplier With Period Error Compensation for Spur Reduction. IEEE Trans. Circuits Syst. II Express Briefs 53-II(11): 1205-1209 (2006) - [c27]Miao Li, Tad A. Kwasniewski, Shoujun Wang:
A 0.18µm CMOS Receiver with Decision-feedback Equalization for Backplane Applications. APCCAS 2006: 1039-1042 - [c26]Qingjin Du, Jingcheng Zhuang, Tad A. Kwasniewski:
A Low Phase Noise Dll Clock Generator with a Programmable Dynamic Frequency Divider. CCECE 2006: 701-704 - [c25]Qingjin Du, Jingcheng Zhuang, Tad A. Kwasniewski:
An Anti-Harmonic Locking, DLL Frequency Multiplier with Low Phase Noise and Reduced Spur. CICC 2006: 761-764 - [c24]William Bereza, Yuming Tao, Shoujun Wang, Tad A. Kwasniewski, Rakesh H. Patel:
PELE: pre-emphasis & equalization link estimator to address the effects of signal integrity limitations. DAC 2006: 1013-1016 - [c23]Miao Li, Wenjie Huang, Tad A. Kwasniewski, Shoujun Wang:
A 0.18µm CMOS clock and data recovery circuit with extended operation range. ISCAS 2006 - [c22]Jingcheng Zhuang, Qingjin Du, Tad A. Kwasniewski:
An eye detection technique for clock and data recovery applications. ISCAS 2006 - [c21]Qingjin Du, Jingcheng Zhuang, Tad A. Kwasniewski:
A Timing Jitter Reduction Technique in a Cyclic Injection Clock Multiplier for Data Communication System. SoCC 2006: 123-126 - 2005
- [c20]Miao Li, Tad A. Kwasniewski, Shoujun Wang, Yuming Tao:
A 10Gb/s transmitter with multi-tap FIR pre-emphasis in 0.18µm CMOS technology. ASP-DAC 2005: 679-682 - [c19]S. I. Ahmed, Kent Orthner, Tadeusz Kwasniewski:
Behavioral test benches for digital clock and data recovery circuits using Verilog-A. CICC 2005: 297-300 - [c18]Shoujun Wang, Haitao Mei, Mashkoor Baig, William Bereza, Tadeusz Kwasniewski, Rakesh H. Patel:
Design considerations for 2nd-order and 3rd-order bang-bang CDR loops. CICC 2005: 317-320 - [c17]Yuming Tao, William Bereza, Rakesh H. Patel, Sergey Y. Shumarayev, Tad A. Kwasniewski:
A signal integrity-based link performance simulation platform. CICC 2005: 725-728 - [c16]Jingcheng Zhuang, Qingjin Du, Tad A. Kwasniewski:
A 4-GB/S half-rate clock and data recovery circuit with a 3-stage VCO. Circuits, Signals, and Systems 2005: 128-131 - [c15]Miao Li, Wenjie Huang, Tad A. Kwasniewski, Shoujun Wang:
A 0.18µm CMOS transceiver design for high-speed backplane data communications. ISCAS (2) 2005: 1158-1161 - [c14]Jing Chen, Miao Li, Tad A. Kwasniewski:
Decision feedback equalization for high-speed backplane data communications. ISCAS (2) 2005: 1274-1277 - [c13]S. I. Ahmed, Tad A. Kwasniewski:
An all-digital data recovery circuit optimization using Matlab/Simulink. ISCAS (5) 2005: 4485-4488 - [c12]Farhad Zarkeshvari, Peter Noel, Tad A. Kwasniewski:
PLL-Based Fractional-N Frequency Synthesizers. IWSOC 2005: 85-91 - [c11]Charles E. Berndt, Tad A. Kwasniewski:
A Review of Common Receive-End Adaptive Equalization Schemes and Algorithms for a High-Speed Serial Backplane. IWSOC 2005: 149-153 - [c10]Moeed Israr, Tad A. Kwasniewski:
Turbo Codes - Digital IC Design. IWSOC 2005: 341-346 - [c9]Miao Li, Peter Noel, Tad A. Kwasniewski, Shoujun Wang:
Decision Feedback Equalization with Quarter-Rate Clock Timing for High-Speed Backplane Data Communications. IWSOC 2005: 500-502 - 2004
- [c8]Arif A. Siddiqi, Tad A. Kwasniewski:
2.4 GHz RF down-conversion mixers in standard CMOS technology. ISCAS (4) 2004: 321-324 - [c7]Muhammad Usama, Tad A. Kwasniewski:
Design and comparison of CMOS Current Mode Logic latches. ISCAS (4) 2004: 353-356 - 2003
- [c6]Jingcheng Zhuang, Qingjin Du, Tad A. Kwasniewski:
A -107dBe, 10kHz carrier offset 2-GHz DLL-based frequency synthesizer. CICC 2003: 301-304 - 2001
- [j5]Lizhong Sun, Tadeusz Kwasniewski:
A 1.25-GHz 0.35-μm monolithic CMOS PLL based on a multiphase ring oscillator. IEEE J. Solid State Circuits 36(6): 910-916 (2001)
1990 – 1999
- 1999
- [c5]Lizhong Sun, Tad A. Kwasniewski:
A 1.25 GHz 0.35 μm monolithic CMOS PLL clock generator for data communications. CICC 1999: 265-268 - [c4]Lizhong Sun, Thierry Lepley, Franck Nozahic, Amaud Bellissant, Tad A. Kwasniewski, Bany Heim:
Reduced complexity, high performance digital delta-sigma modulator for fractional-N frequency synthesis. ISCAS (2) 1999: 152-155 - [c3]Lizhong Sun, Tad A. Kwasniewski, Kris Iniewski:
A quadrature output voltage controlled ring oscillator based on three-stage sub-feedback loops. ISCAS (2) 1999: 176-179 - 1997
- [j4]Manop Thamsirianunt, Tadeusz Kwasniewski:
CMOS VCO's for PLL frequency synthesis in GHz digital mobile radio communications. IEEE J. Solid State Circuits 32(10): 1511-1524 (1997) - 1996
- [c2]Bozena Kaminska, Tad A. Kwasniewski, Linda S. Milor, G. Roberts, P. Flahive, Jérôme Wojcik:
Is High Frequency Analog DFT Possible? VTS 1996: 214-215 - 1995
- [j3]Navid Foroudi, Tadeusz Kwasniewski:
CMOS high-speed dual-modulus frequency divider for RF frequency synthesis. IEEE J. Solid State Circuits 30(2): 93-100 (1995) - 1994
- [j2]Valek Szwarc, Luc Desormeaux, Wilson Wong, Clifford P. S. Yeung, Chong H. Chan, Tad A. Kwasniewski:
A chip set for pipeline and parallel pipeline FFT architectures. J. VLSI Signal Process. 8(3): 253-265 (1994) - [c1]D. P. Noel, Tad A. Kwasniewski, Samy A. Mahmoud, Wilf P. LeBlanc:
A low power, single chip realization of a low-speed, low-delay CELP coder/decoder for indoor wireless systems. VTC 1994: 520-524 - 1991
- [j1]P. Mohanraj, David D. Falconer, Tad A. Kwasniewski:
Baseband Trellis-Coded Modulation with Combined Equalization/Decoding for High Bit Rate Digital Subscriber Loops. IEEE J. Sel. Areas Commun. 9(6): 871-875 (1991)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-04-24 23:07 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint