default search action
Mario Marchand
Person information
- affiliation: Université Laval
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2023
- [j17]Gabriel Laberge, Yann Pequignot, Alexandre Mathieu, Foutse Khomh, Mario Marchand:
Partial Order in Chaos: Consensus on Feature Attributions in the Rashomon Set. J. Mach. Learn. Res. 24: 364:1-364:50 (2023) - 2016
- [j16]Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor S. Lempitsky:
Domain-Adversarial Training of Neural Networks. J. Mach. Learn. Res. 17: 59:1-59:35 (2016) - 2015
- [j15]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, Jean-Francis Roy:
Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm. J. Mach. Learn. Res. 16: 787-860 (2015) - [j14]Sébastien Giguère, François Laviolette, Mario Marchand, Denise M. Tremblay, Sylvain Moineau, Xinxia Liang, Éric Biron, Jacques Corbeil:
Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery. PLoS Comput. Biol. 11(4) (2015) - 2013
- [j13]Sébastien Giguère, Mario Marchand, François Laviolette, Alexandre Drouin, Jacques Corbeil:
Learning a peptide-protein binding affinity predictor with kernel ridge regression. BMC Bioinform. 14: 82 (2013) - 2012
- [j12]Mohak Shah, Mario Marchand, Jacques Corbeil:
Feature Selection with Conjunctions of Decision Stumps and Learning from Microarray Data. IEEE Trans. Pattern Anal. Mach. Intell. 34(1): 174-186 (2012) - 2010
- [j11]François Laviolette, Mario Marchand, Mohak Shah, Sara Shanian:
Learning the set covering machine by bound minimization and margin-sparsity trade-off. Mach. Learn. 78(1-2): 175-201 (2010) - 2008
- [j10]Sébastien Quirion, Chantale Duchesne, Denis Laurendeau, Mario Marchand:
Comparing GPLVM Approaches for Dimensionality Reduction in Character Animation. J. WSCG 16(1-3): 41-48 (2008) - 2007
- [j9]François Laviolette, Mario Marchand:
PAC-Bayes Risk Bounds for Stochastic Averages and Majority Votes of Sample-Compressed Classifiers. J. Mach. Learn. Res. 8: 1461-1487 (2007) - [j8]Zakria Hussain, François Laviolette, Mario Marchand, John Shawe-Taylor, S. Charles Brubaker, Matthew D. Mullin:
Revised Loss Bounds for the Set Covering Machine and Sample-Compression Loss Bounds for Imbalanced Data. J. Mach. Learn. Res. 8: 2533-2549 (2007) - 2005
- [j7]Mario Marchand, Marina Sokolova:
Learning with Decision Lists of Data-Dependent Features. J. Mach. Learn. Res. 6: 427-451 (2005) - 2002
- [j6]Mario Marchand, John Shawe-Taylor:
The Set Covering Machine. J. Mach. Learn. Res. 3: 723-746 (2002) - 1996
- [j5]Mostefa Golea, Mario Marchand, Thomas R. Hancock:
On learning ?-perceptron networks on the uniform distribution. Neural Networks 9(1): 67-82 (1996) - 1994
- [j4]Thomas R. Hancock, Mostefa Golea, Mario Marchand:
Learning Nonoverlapping Perceptron Networks from Examples and Membership Queries. Mach. Learn. 16(3): 161-183 (1994) - 1993
- [j3]Mostefa Golea, Mario Marchand:
Polynomial Time Algorithms for Learning Neural Nets of NonoverlappingPerceptrons. Comput. Intell. 9: 155-170 (1993) - [j2]Mostefa Golea, Mario Marchand:
On Learning Perceptrons with Binary Weights. Neural Comput. 5(5): 767-782 (1993) - 1989
- [j1]Pal Rujan, Mario Marchand:
Learning by Minimizing Resources in Neural Networks. Complex Syst. 3(3) (1989)
Conference and Workshop Papers
- 2024
- [c33]Gabriel Laberge, Yann Batiste Pequignot, Mario Marchand, Foutse Khomh:
Tackling the XAI Disagreement Problem with Regional Explanations. AISTATS 2024: 2017-2025 - 2023
- [c32]Qi Chen, Mario Marchand:
Algorithm-Dependent Bounds for Representation Learning of Multi-Source Domain Adaptation. AISTATS 2023: 10368-10394 - [c31]Gabriel Laberge, Ulrich Aïvodji, Satoshi Hara, Mario Marchand, Foutse Khomh:
Fooling SHAP with Stealthily Biased Sampling. ICLR 2023 - [c30]Qi Chen, Changjian Shui, Ligong Han, Mario Marchand:
On the Stability-Plasticity Dilemma in Continual Meta-Learning: Theory and Algorithm. NeurIPS 2023 - 2021
- [c29]Qi Chen, Changjian Shui, Mario Marchand:
Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis. NeurIPS 2021: 25878-25890 - 2020
- [c28]Jean-Samuel Leboeuf, Frédéric Leblanc, Mario Marchand:
Decision trees as partitioning machines to characterize their generalization properties. NeurIPS 2020 - 2016
- [c27]Jean-Francis Roy, Mario Marchand, François Laviolette:
A Column Generation Bound Minimization Approach with PAC-Bayesian Generalization Guarantees. AISTATS 2016: 1241-1249 - 2015
- [c26]Sébastien Giguère, Amélie Rolland, François Laviolette, Mario Marchand:
Algorithms for the Hard Pre-Image Problem of String Kernels and the General Problem of String Prediction. ICML 2015: 2021-2029 - 2014
- [c25]Alexandre Lacoste, Mario Marchand, François Laviolette, Hugo Larochelle:
Agnostic Bayesian Learning of Ensembles. ICML 2014: 611-619 - [c24]Mario Marchand, Hongyu Su, Emilie Morvant, Juho Rousu, John Shawe-Taylor:
Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks. NIPS 2014: 873-881 - [c23]Alexandre Lacoste, Hugo Larochelle, Mario Marchand, François Laviolette:
Sequential Model-Based Ensemble Optimization. UAI 2014: 440-448 - 2013
- [c22]Sébastien Giguère, François Laviolette, Mario Marchand, Khadidja Sylla:
Risk Bounds and Learning Algorithms for the Regression Approach to Structured Output Prediction. ICML (1) 2013: 107-114 - 2012
- [c21]Alexandre Lacoste, François Laviolette, Mario Marchand:
Bayesian Comparison of Machine Learning Algorithms on Single and Multiple Datasets. AISTATS 2012: 665-675 - 2011
- [c20]Pascal Germain, Alexandre Lacoste, François Laviolette, Mario Marchand, Sara Shanian:
A PAC-Bayes Sample-compression Approach to Kernel Methods. ICML 2011: 297-304 - [c19]Jean-Francis Roy, François Laviolette, Mario Marchand:
From PAC-Bayes Bounds to Quadratic Programs for Majority Votes. ICML 2011: 649-656 - 2010
- [c18]Alexandre Lacasse, François Laviolette, Mario Marchand, Francis Turgeon-Boutin:
Learning with Randomized Majority Votes. ECML/PKDD (2) 2010: 162-177 - 2009
- [c17]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand:
PAC-Bayesian learning of linear classifiers. ICML 2009: 353-360 - [c16]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, Sara Shanian:
From PAC-Bayes Bounds to KL Regularization. NIPS 2009: 603-610 - 2008
- [c15]François Laviolette, Mario Marchand, Sara Shanian:
Selective Sampling for Classification. Canadian AI 2008: 191-202 - 2006
- [c14]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand:
A PAC-Bayes Risk Bound for General Loss Functions. NIPS 2006: 449-456 - [c13]Alexandre Lacasse, François Laviolette, Mario Marchand, Pascal Germain, Nicolas Usunier:
PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier. NIPS 2006: 769-776 - 2005
- [c12]François Laviolette, Mario Marchand, Mohak Shah:
Margin-Sparsity Trade-Off for the Set Covering Machine. ECML 2005: 206-217 - [c11]François Laviolette, Mario Marchand:
PAC-Bayes risk bounds for sample-compressed Gibbs classifiers. ICML 2005: 481-488 - [c10]François Laviolette, Mario Marchand, Mohak Shah:
A PAC-Bayes approach to the Set Covering Machine. NIPS 2005: 731-738 - 2004
- [c9]Mario Marchand, Mohak Shah:
PAC-Bayes Learning of Conjunctions and Classification of Gene-Expression Data. NIPS 2004: 881-888 - 2003
- [c8]Mario Marchand, Mohak Shah, John Shawe-Taylor, Marina Sokolova:
The Set Covering Machine with Data-Dependent Half-Spaces. ICML 2003: 520-527 - 2002
- [c7]Marina Sokolova, Mario Marchand, Nathalie Japkowicz, John Shawe-Taylor:
The Decision List Machine. NIPS 2002: 921-928 - 2001
- [c6]Mario Marchand, John Shawe-Taylor:
Learning with the Set Covering Machine. ICML 2001: 345-352 - 1995
- [c5]Mario Marchand, Saeed Hadjifaradji:
Strong Unimodality and Exact Learning of Constant Depth µ-Perceptron Networks. NIPS 1995: 288-294 - 1994
- [c4]Mario Marchand, Saeed Hadjifaradji:
Learning Stochastic Perceptrons Under k-Blocking Distributions. NIPS 1994: 279-286 - 1993
- [c3]Mostefa Golea, Mario Marchand:
Average Case Analysis of the Clipped Hebb Rule for Nonoverlapping Perception Networks. COLT 1993: 151-157 - [c2]Mostefa Golea, Mario Marchand:
On learning simple deterministic and probabilistic neural concepts. EuroCOLT 1993: 47-60 - 1992
- [c1]Mostefa Golea, Mario Marchand, Thomas R. Hancock:
On Learning µ-Perceptron Networks with Binary Weights. NIPS 1992: 591-598
Parts in Books or Collections
- 2017
- [p1]Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor S. Lempitsky:
Domain-Adversarial Training of Neural Networks. Domain Adaptation in Computer Vision Applications 2017: 189-209
Editorship
- 2006
- [e1]Luc Lamontagne, Mario Marchand:
Advances in Artificial Intelligence, 19th Conference of the Canadian Society for Computational Studies of Intelligence, Canadian AI 2006, Québec City, Québec, Canada, June 7-9, 2006, Proceedings. Lecture Notes in Computer Science 4013, Springer 2006, ISBN 3-540-34628-7 [contents]
Informal and Other Publications
- 2024
- [i19]Wissam Akretche, Frédéric Leblanc, Mario Marchand:
Tighter Risk Bounds for Mixtures of Experts. CoRR abs/2410.10397 (2024) - 2023
- [i18]Qi Chen, Mario Marchand:
Algorithm-Dependent Bounds for Representation Learning of Multi-Source Domain Adaptation. CoRR abs/2304.02064 (2023) - 2022
- [i17]Jean-Samuel Leboeuf, Frédéric Leblanc, Mario Marchand:
Generalization Properties of Decision Trees on Real-valued and Categorical Features. CoRR abs/2210.10781 (2022) - 2021
- [i16]Qi Chen, Changjian Shui, Mario Marchand:
Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis. CoRR abs/2109.14595 (2021) - [i15]Gabriel Laberge, Yann Pequignot, Foutse Khomh, Mario Marchand, Alexandre Mathieu:
Partial order: Finding Consensus among Uncertain Feature Attributions. CoRR abs/2110.13369 (2021) - [i14]Jean-Samuel Leboeuf, Frédéric Leblanc, Mario Marchand:
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion. CoRR abs/2111.00062 (2021) - 2020
- [i13]Jean-Samuel Leboeuf, Frédéric Leblanc, Mario Marchand:
Decision trees as partitioning machines to characterize their generalization properties. CoRR abs/2010.07374 (2020) - 2019
- [i12]Prudencio Tossou, Basile Dura, François Laviolette, Mario Marchand, Alexandre Lacoste:
Adaptive Deep Kernel Learning. CoRR abs/1905.12131 (2019) - 2016
- [i11]Alexandre Drouin, Frédéric Raymond, Gaël Letarte St-Pierre, Mario Marchand, Jacques Corbeil, François Laviolette:
Large scale modeling of antimicrobial resistance with interpretable classifiers. CoRR abs/1612.01030 (2016) - 2015
- [i10]Pascal Germain, Alexandre Lacasse, François Laviolette, Mario Marchand, Jean-Francis Roy:
Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm. CoRR abs/1503.08329 (2015) - [i9]Alexandre Drouin, Sébastien Giguère, Maxime Déraspe, François Laviolette, Mario Marchand, Jacques Corbeil:
Greedy Biomarker Discovery in the Genome with Applications to Antimicrobial Resistance. CoRR abs/1505.06249 (2015) - [i8]Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor S. Lempitsky:
Domain-Adversarial Training of Neural Networks. CoRR abs/1505.07818 (2015) - [i7]Louis Fortier-Dubois, François Laviolette, Mario Marchand, Louis-Émile Robitaille, Jean-Francis Roy:
Efficient Learning of Ensembles with QuadBoost. CoRR abs/1506.02535 (2015) - 2014
- [i6]Alexandre Lacoste, Hugo Larochelle, François Laviolette, Mario Marchand:
Sequential Model-Based Ensemble Optimization. CoRR abs/1402.0796 (2014) - [i5]Alexandre Drouin, Sébastien Giguère, Vladana Sagatovich, Maxime Déraspe, François Laviolette, Mario Marchand, Jacques Corbeil:
Learning interpretable models of phenotypes from whole genome sequences with the Set Covering Machine. CoRR abs/1412.1074 (2014) - [i4]Sébastien Giguère, Amélie Rolland, François Laviolette, Mario Marchand:
On the String Kernel Pre-Image Problem with Applications in Drug Discovery. CoRR abs/1412.1463 (2014) - [i3]Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand:
Domain-Adversarial Neural Networks. CoRR abs/1412.4446 (2014) - 2012
- [i2]Sébastien Giguère, Mario Marchand, François Laviolette, Alexandre Drouin, Jacques Corbeil:
Learning a peptide-protein binding affinity predictor with kernel ridge regression. CoRR abs/1207.7253 (2012) - 2010
- [i1]Mohak Shah, Mario Marchand, Jacques Corbeil:
Feature Selection with Conjunctions of Decision Stumps and Learning from Microarray Data. CoRR abs/1005.0530 (2010)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-26 21:43 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint