- Minh Ha Tran, Ofelia Gomez, Baowei Fei:
A video transformer network for thyroid cancer detection on hyperspectral histologic images. Digital and Computational Pathology 2023 - Michael H. Udin, Scott T. Doyle, Ciprian N. Ionita, Umesh C. Sharma, Saraswati Pokharel:
Automated identification of cardiomyocyte nuclei in H&E-stained heart tissue with CycleGAN. Digital and Computational Pathology 2023 - Carlos Vega, Laura Quintana, Samuel Ortega, Himar Fabelo, Esther Sauras, Noèlia Gallardo, Daniel Mata Cano, Marylène Lejeune, Carlos López, Gustavo M. Callicó:
YOLOX-based framework for nuclei detection on whole-slide histopathological RGB and hyperspectral images. Digital and Computational Pathology 2023 - Trinh Thi Le Vuong, Jin Tae Kwak:
Quintet margin loss for an improved knowledge distillation in histopathology image analysis. Digital and Computational Pathology 2023 - Zhimin Wang, Zong Fan, Lulu Sun, Yao Hao, Hiram A. Gay, Wade L. Thorstad, Xiaowei Wang, Hua Li:
Deep-supervised adversarial learning-based classification for digital histologic images. Digital and Computational Pathology 2023 - Hao Wu, Xinjian Chen, Weifang Zhu, Fei Shi, Dehui Xiang:
Enhanced pooling-convolution for pathological image multi-class segmentation. Digital and Computational Pathology 2023 - Front Matter: Volume 12471. Digital and Computational Pathology 2023
- Kesi Xu, Mostafa Jahanifar, Simon Graham, Nasir M. Rajpoot:
Accurate segmentation of nuclear instances using a double-stage neural network. Digital and Computational Pathology 2023 - Jingjing Zhao, Aidan Van Vleck, Yonatan Winetraub, Lin Du, Yong Han, Sumaira Aasi, Kavita Yang Sarin, Adam de la Zerda:
Multifocal optical metasurfaces for cellular-resolution optical coherence tomography for rapid slide-free histology of human brain and skin samples. Digital and Computational Pathology 2023 - Yufei Zhou, Can Koyuncu, Cristian Barrera, Germán Corredor, Xiangxue Wang, Cheng Lu, Anant Madabhushi:
Transformer as a spatially-aware multi-instance learning framework to predict the risk of death for early-stage non-small cell lung cancer. Digital and Computational Pathology 2023 - Zhibang Zhou, Dehui Xiang, Fei Shi, Weifang Zhu, Xinjian Chen:
Category feature reconstruction for pathological image segmentation. Digital and Computational Pathology 2023 - John E. Tomaszewski, Aaron D. Ward:
Medical Imaging 2023: Digital and Computational Pathology, San Diego, CA, USA, February 19-23, 2023. SPIE Proceedings 12039, SPIE 2023, ISBN 9781510660472 [contents] - 2022
- Aya Aqeel, Germán Corredor, Vidya Sankar Viswanathan, Chuheng Chen, Mogjan Mokhtari, Pingfu Fu, Joseph E. Willis, Anant Madabhushi:
Computer extracted features of tumor-infiltrating lymphocytes (TILs) architecture are prognostic of progression-free survival in stage III colon cancer. Digital and Computational Pathology 2022 - Deepak Bajhaiya, Sujatha Narayanan Unni:
Deep learning-enabled classification of gastric ulcers from wireless capsule endoscopic images. Digital and Computational Pathology 2022 - Shunxing Bao, Yucheng Tang, Ho Hin Lee, Riqiang Gao, Qi Yang, Xin Yu, Sophie Chiron, Lori A. Coburn, Keith T. Wilson, Joseph T. Roland, Bennett A. Landman, Yuankai Huo:
Inpainting missing tissue in multiplexed immunofluorescence imaging. Digital and Computational Pathology 2022 - Samuel P. Border, Brandon Ginley, John E. Tomaszewski, Pinaki Sarder:
HistoLens: a generalizable tool for increasing accessibility and interpretability of quantitative analyses in digital pathology. Digital and Computational Pathology 2022 - Michael Brehler, Allison K. Lowman, Samuel Bobholz, Savannah R. Duenweg, Fitzgerald Kyereme, Cassandra Naze, John Sherman, Kenneth A. Iczkowski, Peter S. LaViolette:
An automated approach for annotating Gleason patterns in whole-mount prostate cancer histology using deep learning. Digital and Computational Pathology 2022 - Jon Camp, Gregory Otteson, Jansen Seheult, Min Shi, Dragan Jevremovic, Horatiu Olteanu, Ahmad Nanaa, Aref Al-Kali, Mohamed Salama, David R. Holmes III:
Deep neural network for cell type differentiation in myelodysplastic syndrome diagnosis performs similarly when trained on compensated or uncompensated data. Digital and Computational Pathology 2022 - David R. Chambers, Bradley B. Brimhall, Donald R. Poole Jr., Edward A. Medina:
Cancer cell segmentation for cellularity prediction via a weakly labeled/strongly labeled hybrid convolutional neural network. Digital and Computational Pathology 2022 - Chuheng Chen, Cheng Lu, Joseph E. Willis, Anant Madabhushi:
Identifying the origination of liver metastasis using a hand-crafted computational pathology approach. Digital and Computational Pathology 2022 - Antong Chen, Tosha Shah, Andrew Brown, Haleh Akrami, Albert Swiston, Amir Vajdi, Radha Krishnan, Razvan Cristescu:
Prediction of tumor mutation burden from H&E whole-slide images: a comparison of training strategies with convolutional neural networks. Digital and Computational Pathology 2022 - Alison M. Cheung, Dan Wang, Kela Liu, Sarah Hynes, Ben Wang, Simone Stone, Pamela Ohashi, Martin J. Yaffe:
Spatial analysis of cellular arrangement using quantitative, single-cell imaging of protein multiplexing. Digital and Computational Pathology 2022 - Rakesh Choudhary, Dhadma Balachandran, Jonathan Folmsbee, Jawaria Rahman, Margaret Brandwein-Weber, Scott Doyle:
Automatic flagging of AI segmentation errors in computational pathology. Digital and Computational Pathology 2022 - Salma Dammak, Matthew J. Cecchini, Aaron D. Ward:
Using deep learning to predict tumor mutational burden in lung squamous cell carcinoma from 20 centers. Digital and Computational Pathology 2022 - Junwei Deng, Yiqing Shen, Yi Guo, Jing Ke:
CellSegNet: an adaptive multi-resolution hybrid network for cell segmentation. Digital and Computational Pathology 2022 - Ruining Deng, Haichun Yang, Zuhayr Asad, Zheyu Zhu, Shiru Wang, Lee E. Wheless, Agnes B. Fogo, Yuankai Huo:
Dense multi-object 3D glomerular reconstruction and quantification on 2D serial section whole slide images. Digital and Computational Pathology 2022 - Farzad Fereidouni, Richard M. Levenson:
DUET dual-mode scanning of H&E slides reveals novel contrast. Digital and Computational Pathology 2022 - Farzad Fereidouni, Taryn Morningstar, Alexander Borowsky, Richard M. Levenson:
FIBI: a direct-to-digital microscopy approach for slide-free histology. Digital and Computational Pathology 2022 - Nikolai Fetisov, Lawrence O. Hall, Dmitry B. Goldgof, Matthew B. Schabath:
Survival time prediction from unannotated lung cancer histopathology images. Digital and Computational Pathology 2022 - Jonathan Folmsbee, Scott Doyle, Rakesh Choudhary, Margaret Brandwein-Weber, Jawaria Rahman:
Cloud-based platform for human-in-the-loop re-annotation of whole slide imaging: large scale semantic pathology segmentation. Digital and Computational Pathology 2022