


default search action
Ron Goldman 0002
Person information
- affiliation: Rice University, Houston, TX, USA
Other persons with the same name
- Ron Goldman 0001 — Oracle
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j119]Ron Goldman:
Subdivision algorithms with modular arithmetic. Comput. Aided Geom. Des. 108: 102267 (2024) - 2023
- [j118]O. Ogulcan Tuncer
, Plamen Simeonov, Ron Goldman:
On the uniqueness of the multirational blossom. Comput. Aided Geom. Des. 107: 102252 (2023) - 2021
- [j117]Haohao Wang
, Ron Goldman:
Ruled Surfaces of Revolution with Moving Axes and Angles. Int. J. Comput. Geom. Appl. 31(2-3): 163-181 (2021) - 2020
- [j116]Juan Gerardo Alcázar
, Ron Goldman:
Recognizing algebraic affine rotation surfaces. Comput. Aided Geom. Des. 81: 101905 (2020) - [j115]Meng Li
, Ron Goldman:
Limits of sums for binomial and Eulerian numbers and their associated distributions. Discret. Math. 343(7): 111870 (2020)
2010 – 2019
- 2019
- [j114]Xiao-Wei Xu
, Ron Goldman:
On Lototsky-Bernstein operators and Lototsky-Bernstein bases. Comput. Aided Geom. Des. 68: 48-59 (2019) - [j113]Nira Dyn, Ron Goldman, David Levin:
High order smoothness of non-linear Lane-Riesenfeld algorithms in the functional setting. Comput. Aided Geom. Des. 71: 119-129 (2019) - [j112]Li-Yong Shen
, Sonia Pérez-Díaz
, Ron Goldman, Yifei Feng:
Representing rational curve segments and surface patches using semi-algebraic sets. Comput. Aided Geom. Des. 74 (2019) - [j111]Haohao Wang, Ron Goldman:
Surfaces of revolution with moving axes and angles. Graph. Model. 106 (2019) - [j110]Juan Du, Ron Goldman, Xuhui Wang:
Rational curves over generalized complex numbers. J. Symb. Comput. 93: 56-84 (2019) - [j109]Ron Goldman, Plamen Simeonov:
q-Blossoming for analytic functions. Numer. Algorithms 82(1): 107-121 (2019) - [i3]Meng Li, Ron Goldman:
Limits of Sums for Binomial and Eulerian Numbers and their Associated Distributions. CoRR abs/1903.06317 (2019) - 2018
- [j108]Li-Yong Shen
, Ron Goldman:
Combining complementary methods for implicitizing rational tensor product surfaces. Comput. Aided Des. 104: 100-112 (2018) - [j107]Haohao Wang, Ron Goldman:
Implicitizing ruled translational surfaces. Comput. Aided Geom. Des. 59: 98-106 (2018) - [j106]Yang Zhang, Visit Pataranutaporn, Ron Goldman:
de Boor-suitable (DS) T-splines. Graph. Model. 97: 40-49 (2018) - [j105]Haohao Wang, Ron Goldman:
Syzygies for translational surfaces. J. Symb. Comput. 89: 73-93 (2018) - [j104]Haohao Wang, Ron Goldman:
Using Dual Quaternion to Study Translational Surfaces. Math. Comput. Sci. 12(1): 69-75 (2018) - 2017
- [j103]Li-Yong Shen
, Ron Goldman:
Algorithms for computing strong μ-bases for rational tensor product surfaces. Comput. Aided Geom. Des. 52: 48-62 (2017) - [j102]Xiao-Wei Xu
, Xiao-Ming Zeng, Ron Goldman:
Shape preserving properties of univariate Lototsky-Bernstein operators. J. Approx. Theory 224: 13-42 (2017) - [j101]Yu Zhou, Ron Goldman, James McLurkin:
An Asymmetric Distributed Method for Sorting a Robot Swarm. IEEE Robotics Autom. Lett. 2(1): 261-268 (2017) - [j100]Li-Yong Shen
, Ron Goldman:
Strong μ-Bases for Rational Tensor Product Surfaces and Extraneous Factors Associated to Bad Base Points and Anomalies at Infinity. SIAM J. Appl. Algebra Geom. 1(1): 328-351 (2017) - [j99]Li-Yong Shen
, Ron Goldman:
Implicitizing Rational Tensor Product Surfaces Using the Resultant of Three Moving Planes. ACM Trans. Graph. 36(5): 167:1-167:14 (2017) - [j98]Juan Gerardo Alcázar
, Ron Goldman:
Detecting When an Implicit Equation or a Rational Parametrization Defines a Conical or Cylindrical Surface, or a Surface of Revolution. IEEE Trans. Vis. Comput. Graph. 23(12): 2550-2559 (2017) - [c17]Yu Zhou, Ron Goldman:
Building Fractals with a Robot Swarm. ICSI (2) 2017: 185-198 - 2016
- [j97]Xuhui Wang
, Ron Goldman, Thomas W. Sederberg:
Explicit μ-bases for conic sections and planar rational cubic curves. Comput. Aided Geom. Des. 41: 62-75 (2016) - [j96]Ron Goldman, Xuhui Wang
:
Two additional advantages of complex μ-bases for non-ruled real quadric surfaces. Comput. Aided Geom. Des. 42: 31-33 (2016) - [j95]Thomas W. Sederberg, Ronald N. Goldman, Xuhui Wang:
Birational 2D Free-Form Deformation of degree 1 × n. Comput. Aided Geom. Des. 44: 1-9 (2016) - [j94]Ron Goldman, Plamen Simeonov:
Generalized quantum splines. Comput. Aided Geom. Des. 47: 29-54 (2016) - [j93]Juan Gerardo Alcázar
, Ron Goldman, Carlos Hermoso
:
Algebraic surfaces invariant under scissor shears. Graph. Model. 87: 23-34 (2016) - [j92]Ron Goldman, Plamen Simeonov:
Novel polynomial Bernstein bases and Bézier curves based on a general notion of polynomial blossoming. Numer. Algorithms 72(3): 605-634 (2016) - [j91]Juan Gerardo Alcázar
, Ron Goldman:
Finding the Axis of Revolution of an Algebraic Surface of Revolution. IEEE Trans. Vis. Comput. Graph. 22(9): 2082-2093 (2016) - [c16]Binhang Yuan, Ronald N. Goldman, Eric Wang
, Olushola Olorunnipa, David Khechoyan:
Generating a 3D Normative Infant Cranial Model. ICCS 2016: 988-998 - 2015
- [j90]Rachid Ait-Haddou, Ron Goldman:
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials. Appl. Math. Comput. 266: 267-276 (2015) - [j89]Ron Goldman, Thomas W. Sederberg, Xuhui Wang:
Complex μ-bases for real quadric surfaces. Comput. Aided Geom. Des. 37: 57-68 (2015) - [j88]Xuhui Wang, Ron Goldman:
Quaternion rational surfaces: Rational surfaces generated from the quaternion product of two rational space curves. Graph. Model. 81: 18-32 (2015) - [j87]Çetin Disibüyük
, Ron Goldman:
A unifying structure for polar forms and for Bernstein Bézier curves. J. Approx. Theory 192: 234-249 (2015) - [j86]Gülter Budakçi, Çetin Disibüyük
, Ron Goldman
, Halil Oruç
:
Extending fundamental formulas from classical B-splines to quantum B-splines. J. Comput. Appl. Math. 282: 17-33 (2015) - [j85]Ron Goldman, Plamen Simeonov:
Quantum Bernstein bases and quantum Bézier curves. J. Comput. Appl. Math. 288: 284-303 (2015) - 2014
- [j84]Xuhui Wang
, Ron Goldman:
Corrigendum to Example 4 in "μ-Bases for complex rational curves" [Computer Aided Geometric Design 30 (2013), 623-635]. Comput. Aided Geom. Des. 31(5): 277-278 (2014) - [j83]Ron Goldman, Plamen Simeonov, Yilmaz Simsek
:
Generating Functions for the q-Bernstein Bases. SIAM J. Discret. Math. 28(3): 1009-1025 (2014) - 2013
- [j82]Xuhui Wang
, Ron Goldman:
μ-Bases for complex rational curves. Comput. Aided Geom. Des. 30(7): 623-635 (2013) - [j81]Ron Goldman:
Modeling perspective projections in 3-dimensions by rotations in 4-dimensions. Graph. Model. 75(2): 41-55 (2013) - [j80]Xiaoran Shi, Xiaohong Jia, Ron Goldman:
Using a bihomogeneous resultant to find the singularities of rational space curves. J. Symb. Comput. 53: 1-25 (2013) - 2012
- [j79]Xiaohong Jia, Ron Goldman:
Using Smith normal forms and μ-bases to compute all the singularities of rational planar curves. Comput. Aided Geom. Des. 29(6): 296-314 (2012) - [j78]Xiaoran Shi, Ron Goldman:
Implicitizing rational surfaces of revolution using μ-bases. Comput. Aided Geom. Des. 29(6): 348-362 (2012) - [j77]Xiaoran Shi, Xuhui Wang
, Ron Goldman:
Using μ-bases to implicitize rational surfaces with a pair of orthogonal directrices. Comput. Aided Geom. Des. 29(7): 541-554 (2012) - [j76]Ron Goldman, Plamen Simeonov:
Formulas and algorithms for quantum differentiation of quantum Bernstein bases and quantum Bézier curves based on quantum blossoming. Graph. Model. 74(6): 326-334 (2012) - [j75]Plamen Simeonov, Vasilis Zafiris, Ron Goldman:
q-Blossoming: A new approach to algorithms and identities for q-Bernstein bases and q-Bézier curves. J. Approx. Theory 164(1): 77-104 (2012) - [c15]Ron Goldman:
Generating Functions for Uniform B-Splines. MMCS 2012: 172-188 - 2011
- [j74]Plamen Simeonov, Vasilis Zafiris, Ron Goldman:
h-Blossoming: A new approach to algorithms and identities for h-Bernstein bases and h-Bézier curves. Comput. Aided Geom. Des. 28(9): 549-565 (2011) - [j73]Ron Goldman:
Understanding quaternions. Graph. Model. 73(2): 21-49 (2011) - [j72]Nira Dyn, Ron Goldman:
Convergence and Smoothness of Nonlinear Lane-Riesenfeld Algorithms in the Functional Setting. Found. Comput. Math. 11(1): 79-94 (2011) - [p9]Ron Goldman:
A Homogeneous Model for Three-Dimensional Computer Graphics Based on the Clifford Algebra for ℝ3. Guide to Geometric Algebra in Practice 2011: 329-352 - 2010
- [b2]Ron Goldman:
Rethinking Quaternions. Synthesis Lectures on Computer Graphics and Animation, Morgan & Claypool Publishers 2010, ISBN 978-3-031-79548-0 - [j71]Xiaohong Jia, Haohao Wang, Ron Goldman:
Set-theoretic generators of rational space curves. J. Symb. Comput. 45(4): 414-433 (2010) - [i2]Xiaohong Jia, Ron Goldman:
Using Smith Normal Forms and mu-Bases to Compute all the Singularities of Rational Planar Curves. CoRR abs/1005.0085 (2010)
2000 – 2009
- 2009
- [j70]Scott Schaefer, Ron Goldman:
Non-uniform subdivision for B-splines of arbitrary degree. Comput. Aided Geom. Des. 26(1): 75-81 (2009) - [j69]Ning Song, Ron Goldman:
mu-bases for polynomial systems in one variable. Comput. Aided Geom. Des. 26(2): 217-230 (2009) - [j68]Ron Goldman, Etienne Vouga, Scott Schaefer:
On the smoothness of real-valued functions generated by subdivision schemes using nonlinear binary averaging. Comput. Aided Geom. Des. 26(2): 231-242 (2009) - [j67]Haohao Wang, Xiaohong Jia, Ron Goldman:
Axial moving planes and singularities of rational space curves. Comput. Aided Geom. Des. 26(3): 300-316 (2009) - [j66]Xiaohong Jia, Ron Goldman:
µ-Bases and singularities of rational planar curves. Comput. Aided Geom. Des. 26(9): 970-988 (2009) - 2008
- [j65]Ron Goldman:
After the revolution: Geometric algebra for Computer Scientists in the twenty-first century. Comput. Aided Des. 40(5): 655-656 (2008) - [j64]Scott Schaefer, Etienne Vouga, Ron Goldman:
Nonlinear subdivision through nonlinear averaging. Comput. Aided Geom. Des. 25(3): 162-180 (2008) - [j63]Laurent Busé
, Ron Goldman:
Division algorithms for Bernstein polynomials. Comput. Aided Geom. Des. 25(9): 850-865 (2008) - 2007
- [j62]Ning Song, Falai Chen, Ron Goldman:
Axial moving lines and singularities of rational planar curves. Comput. Aided Geom. Des. 24(4): 200-209 (2007) - [j61]Stefanie Hahmann, Guido Brunnett, Gerald E. Farin, Ron Goldman:
Editorial: Special issue on Geometric Modeling (Dagstuhl 2005). Computing 79(2-4): 99 (2007) - [j60]Etienne Vouga, Ron Goldman:
Two blossoming proofs of the Lane-Riesenfeld algorithm. Computing 79(2-4): 153-162 (2007) - 2006
- [j59]Ming Zhang, Liqun Wang, Ronald N. Goldman:
Bézier Subdivision for Inverse Molecular Kinematics. Int. J. Comput. Geom. Appl. 16(5-6): 513-532 (2006) - [p8]Ron Goldman:
Algebraic geometry and geometric modeling: insight and computation. Algebraic Geometry and Geometric Modeling 2006: 1-22 - 2005
- [j58]Ming Zhang, R. Allen White, Liqun Wang, Ronald N. Goldman, Lydia E. Kavraki
, Brendan Hassett:
Improving conformational searches by geometric screening. Bioinform. 21(5): 624-630 (2005) - [j57]Ron Goldman:
Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7): 632-658 (2005) - [c14]Scott Schaefer, David Levin, Ron Goldman:
Subdivision Schemes and Attractors. Symposium on Geometry Processing 2005: 171-180 - [e2]Stefanie Hahmann, Guido Brunnett, Gerald E. Farin, Ron Goldman:
Geometric Modeling, 29.05. - 03.06.2005. Dagstuhl Seminar Proceedings 05221, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany 2005 [contents] - [i1]Stefanie Hahmann, Guido Brunnett, Gerald E. Farin, Ron Goldman:
05221 Report of the Dagstuhl seminar on - Geometric Modelling. Geometric Modeling 2005 - 2004
- [j56]Ron Goldman, Scott Schaefer, Tao Ju:
Turtle geometry in computer graphics and computer-aided design. Comput. Aided Des. 36(14): 1471-1482 (2004) - [j55]Ronald N. Goldman:
Multisided arrays of control points for multisided Bezier patches. Comput. Aided Geom. Des. 21: 243-261 (2004) - [j54]Tao Ju, Scott Schaefer, Ron Goldman:
Recursive turtle programs and iterated affine transformations. Comput. Graph. 28(6): 991-1004 (2004) - [j53]Ronald N. Goldman, Wenping Wang:
Using Invariants To Extract Geometric Characteristics Of Conic Sections From Rational Quadratic Parameterizations. Int. J. Comput. Geom. Appl. 14(3): 161-187 (2004) - [c13]Ronald N. Goldman:
The Fractal Nature of Bezier Curves. GMP 2004: 3-11 - [c12]Amit Khetan, Ning Song, Ron Goldman:
Sylvester-resultants for bivariate polynomials with planar newton polygons. ISSAC 2004: 205-212 - 2003
- [b1]Ronald N. Goldman:
Pyramid algorithms - a dynamic programming approach to curves and surfaces for geometric modeling. Morgan Kaufmann series in computer graphics and geometric modeling, Morgan Kaufmann 2003, ISBN 978-1-55860-354-7, pp. I-XXIII, 1-551 - [j52]Wenping Wang, Ronald N. Goldman, Changhe Tu:
Enhancing Levin's method for computing quadric-surface intersections. Comput. Aided Geom. Des. 20(7): 401-422 (2003) - [j51]Ron Goldman:
Deriving Linear Transformations in Three Dimensions. IEEE Computer Graphics and Applications 23(3): 66-71 (2003) - [c11]Tao Ju, Ron Goldman:
Morphing Rational B-spline Curves and Surfaces Using Mass Distributions. Eurographics (Short Presentations) 2003 - [c10]Ron Goldman:
Computer Graphics in its Fifth Decade: Ferment at the Foundations. PG 2003: 4-21 - 2002
- [j50]Ronald N. Goldman, Géraldine Morin:
The affine invariant analytic blossom. Comput. Aided Geom. Des. 19(8): 621-623 (2002) - [j49]Wenping Wang, Barry Joe, Ronald N. Goldman:
Computing quadric surface intersections based on an analysis of plane cubic curves. Graph. Model. 64(6): 335-367 (2002) - [j48]Eng-Wee Chionh, Ming Zhang, Ronald N. Goldman:
Fast Computation of the Bezout and Dixon Resultant Matrices. J. Symb. Comput. 33(1): 13-29 (2002) - [j47]Ron Goldman:
On the algebraic and geometric foundations of computer graphics. ACM Trans. Graph. 21(1): 52-86 (2002) - 2001
- [j46]Géraldine Morin, Ronald N. Goldman:
Trimming analytic functions using right sided Poisson subdivision. Comput. Aided Des. 33(11): 813-824 (2001) - [j45]Géraldine Morin, Ronald N. Goldman:
On the smooth convergence of subdivision and degree elevation for Bézier curves. Comput. Aided Geom. Des. 18(7): 657-666 (2001) - [j44]Ron Goldman:
Baseball Arithmetic and the Laws of Pseudoperspective. IEEE Computer Graphics and Applications 21(2): 70-78 (2001) - 2000
- [j43]Géraldine Morin, Ronald N. Goldman:
A subdivision scheme for Poisson curves and surfaces. Comput. Aided Geom. Des. 17(9): 813-833 (2000) - [j42]Ron Goldman:
The Ambient Spaces of Computer Graphics and Geometric Modeling. IEEE Computer Graphics and Applications 20(2): 76-84 (2000) - [j41]David A. Cox, Ronald N. Goldman, Ming Zhang:
On the Validity of Implicitization by Moving Quadrics for Rational Surfaces with No Base Points. J. Symb. Comput. 29(3): 419-440 (2000) - [c9]Ronald N. Goldman, Géraldine Morin:
Poisson Approximation. GMP 2000: 141-149 - [c8]Eng-Wee Chionh, Ming Zhang, Ronald N. Goldman:
Implicitization by Dixon A-Resultants. GMP 2000: 310-318 - [c7]Ming Zhang, Ronald N. Goldman:
Rectangular corner cutting and Sylvester A-resultants. ISSAC 2000: 301-308
1990 – 1999
- 1999
- [j40]Ming Zhang, Eng-Wee Chionh, Ronald N. Goldman:
On a relationship between the moving line and moving conic coefficient matrices. Comput. Aided Geom. Des. 16(6): 517-527 (1999) - [j39]Ron Goldman:
Blossoming with cancellation. Comput. Aided Geom. Des. 16(7): 671-689 (1999) - [j38]Ron Goldman:
The rational Bernstein bases and the multirational blossoms. Comput. Aided Geom. Des. 16(8): 701-738 (1999) - [c6]Ron Goldman:
Blossoming and Divided Difference. Geometric Modelling 1999: 155-184 - 1998
- [c5]L. Yohanes Stefanus, Ronald N. Goldman:
On the Linear Independence of the Bivariate Discrete Convolution Blending Functions. CATS 1998: 231-244 - 1997
- [j37]Wan Ainun Mior Othman
, Ronald N. Goldman:
The dual basis functions for the generalized Ball basis of odd degree. Comput. Aided Geom. Des. 14(6): 571-582 (1997) - [j36]Wenping Wang, Barry Joe, Ronald N. Goldman:
Rational Quadratic Parameterizations of Quadrics. Int. J. Comput. Geom. Appl. 7(6): 599- (1997) - [j35]Thomas W. Sederberg, Ron Goldman, Hang Du:
Implicitizing Rational Curves by the Method of Moving Algebraic Curves. J. Symb. Comput. 23(2/3): 153-175 (1997) - [j34]Suresh K. Lodha, Ron Goldman:
A unified approach to evaluation algorithms for multivariate polynomials. Math. Comput. 66(220): 1521-1553 (1997) - 1996
- [j33]Ayman W. Habib, Ronald N. Goldman:
Theories of contact specified by connection matrices. Comput. Aided Geom. Des. 13(9): 905-929 (1996) - 1995
- [j32]Suresh K. Lodha, Ron Goldman:
Change of basis algorithms for surfaces in CAGD. Comput. Aided Geom. Des. 12(8): 801-824 (1995) - [j31]Eng-Wee Chionh, Ronald N. Goldman:
Elimination and resultants. 1. Elimination and bivariate resultants. IEEE Computer Graphics and Applications 15(1): 69-77 (1995) - [j30]Eng-Wee Chionh, Ronald N. Goldman:
Elimination and resultants.2. Multivariate resultants. IEEE Computer Graphics and Applications 15(2): 60-69 (1995) - [j29]James R. Miller, Ronald N. Goldman:
Geometric Algorithms for Detecting and Calculating All Conic Sections in the Intersection of Any 2 Natural Quadric Surfaces. CVGIP Graph. Model. Image Process. 57(1): 55-66 (1995) - 1994
- [j28]Eng-Wee Chionh, Ronald N. Goldman:
On the Existence and the Coefficients of the Implicit Equation of Rational Surfaces. CVGIP Graph. Model. Image Process. 56(1): 19-24 (1994) - [p7]Phillip J. Barry, Ron Goldman:
Knot Insertion Using Forward Differences. Graphics Gems 1994: 251-255 - 1993
- [j27]Phillip J. Barry, Ronald N. Goldman, Charles A. Micchelli:
Knot insertion algorithms for piecewise polynomial spaces determined by connection matrices. Adv. Comput. Math. 1(2): 139-171 (1993) - [j26]Ron Goldman, Joe D. Warren:
An Extension of Chaiken's Algorithm to B-Spline Curves with Knots in Geometric Progression. CVGIP Graph. Model. Image Process. 55(1): 58-62 (1993) - [j25]Ron Goldman, Joe D. Warren:
Erratum: Volume 55, Number 1 (1993) in the article "An Extension of Chaiken's Algorithm to B-Spline Curves with Knots in Geometric Progression," by Ron Goldman and Joe Warren, pages 58-62. CVGIP Graph. Model. Image Process. 55(4): 324 (1993) - [j24]Tony DeRose, Ronald N. Goldman, Hans Hagen, Stephen Mann
:
Functional Composition Algorithms via Blossoming. ACM Trans. Graph. 12(2): 113-135 (1993) - [c4]Phillip J. Barry, Ronald N. Goldman:
Unimodal Properties of Generalized Ball Bases. Geometric Modelling 1993: 35-41 - 1992
- [j23]Phillip J. Barry, John C. Beatty, Ronald N. Goldman:
Unimodal properties of B-spline and Bernstein-basis functions. Comput. Aided Des. 24(12): 627-636 (1992) - [j22]L. Yohanes Stefanus, Ronald N. Goldman:
Blossoming Marsden's identity. Comput. Aided Geom. Des. 9(2): 73-84 (1992) - [j21]Eng-Wee Chionh, Ronald N. Goldman:
Degree, multiplicity, and inversion formulas for rational surfaces using u-resultants. Comput. Aided Geom. Des. 9(2): 93-108 (1992) - [j20]James R. Miller, Ronald N. Goldman:
Using tangent balls to find plane sections of natural quadrics. IEEE Computer Graphics and Applications 12(2): 68-82 (1992) - [j19]Eng-Wee Chionh, Ronald N. Goldman:
Using multivariate resultants to find the implicit equation of a rational surface. Vis. Comput. 8(3): 171-180 (1992) - [p6]Ronald N. Goldman:
Cross Product in Four Dimensions and beyond. Graphics Gems III 1992: 84-88 - [p5]Ronald N. Goldman:
Decomposing Projective Transformations. Graphics Gems III 1992: 98-107 - [p4]Ronald N. Goldman:
Decomposing linear and Affine Transformations. Graphics Gems III 1992: 108-116 - [p3]Phillip J. Barry, Ronald N. Goldman:
Chapter 2: Algorithms for Progressive Curves: Extending B-Spline and Blossoming Techniques to the Monomial, Power, and Newton Dual Bases. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces 1992: 11-63 - [p2]Phillip J. Barry, Ronald N. Goldman:
Chapter 3: Factored Knot Insertion. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces 1992: 65-88 - [p1]Phillip J. Barry, Ronald N. Goldman:
Chapter 4: Knot Insertion Algorithms. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces 1992: 89-133 - [e1]Ronald N. Goldman, Tom Lyche:
Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces. SIAM 1992, ISBN 978-0-89871-306-0 [contents] - 1991
- [j18]Phillip J. Barry, Ronald N. Goldman:
Interpolation and approximation of curves and surfaces using Pólya polynomials. CVGIP Graph. Model. Image Process. 53(2): 137-148 (1991) - [j17]Phillip J. Barry, Ronald N. Goldman:
Shape parameter deletion for Pólya curves. Numer. Algorithms 1(2): 121-137 (1991) - [j16]Eng-Wee Chionh, Ronald N. Goldman, James R. Miller:
Using Multivariate Resultants to Find the Intersection of Three Quadric Surfaces. ACM Trans. Graph. 10(4): 378-400 (1991) - [c3]Ronald N. Goldman, James R. Miller:
Combining algebraic rigor with geometric robustness for the detection and calculation of conic sections in the intersection of two natural quadric surfaces. Symposium on Solid Modeling and Applications 1991: 221-231 - 1990
- [j15]Ronald N. Goldman:
Geometric continuity. Comput. Aided Des. 22(1): 68-69 (1990) - [j14]Ronald N. Goldman:
Blossoming and knot insertion algorithms for B-spline curves. Comput. Aided Geom. Des. 7(1-4): 69-81 (1990)
1980 – 1989
- 1988
- [j13]Phillip J. Barry, Ronald N. Goldman:
A recursive proof of a B-spline identity for degree elevation. Comput. Aided Geom. Des. 5(2): 173-175 (1988) - [c2]Phillip J. Barry, Ronald N. Goldman:
A recursive evaluation algorithm for a class of Catmull-Rom splines. SIGGRAPH 1988: 199-204 - 1986
- [j12]Ronald N. Goldman, Tony DeRose:
Recursive subdivision without the convex hull property. Comput. Aided Geom. Des. 3(4): 247-265 (1986) - [j11]Ronald N. Goldman:
Urn Models and Beta-Splines. IEEE Computer Graphics and Applications 6(2): 57-64 (1986) - [j10]Thomas W. Sederberg, Ronald N. Goldman:
Algebraic Geometry for Computer-Aided Geometric Design. IEEE Computer Graphics and Applications 6(6): 52-59 (1986) - 1985
- [j9]Ronald N. Goldman:
The method of resolvents: A technique for the implicitization, inversion, and intersection of non-planar, parametric, rational cubic curves. Comput. Aided Geom. Des. 2(4): 237-255 (1985) - [j8]Thomas W. Sederberg, David C. Anderson, Ronald N. Goldman:
Implicitization, inversion, and intersection of planar rational cubic curves. Comput. Vis. Graph. Image Process. 31(1): 89-102 (1985) - [j7]Ronald N. Goldman:
Markov Chains and Computer Aided Geometric Design II - Examples and Subdivision Matrices. ACM Trans. Graph. 4(1): 12-40 (1985) - [j6]Ronald N. Goldman:
Illicit Expressions in Vector Algebra. ACM Trans. Graph. 4(3): 223-243 (1985) - [j5]Ronald N. Goldman, Thomas W. Sederberg:
Some applications of resultants to problems in computational geometry. Vis. Comput. 1(2): 101-107 (1985) - 1984
- [j4]Ronald N. Goldman, David C. Heath:
Linear subdivision is strictly a polynomial phenomenon. Comput. Aided Geom. Des. 1(3): 269-278 (1984) - [j3]Ronald N. Goldman, Thomas W. Sederberg, David C. Anderson:
Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves. Comput. Aided Geom. Des. 1(4): 327-356 (1984) - [j2]Thomas W. Sederberg, David C. Anderson, Ronald N. Goldman:
Implicit representation of parametric curves and surfaces. Comput. Vis. Graph. Image Process. 28(1): 72-84 (1984) - [j1]Ronald N. Goldman:
Markov Chains and Computer-Aided Geometric Design: Part I - Problems and Constraints. ACM Trans. Graph. 3(3): 204-222 (1984) - 1983
- [c1]Ronald N. Goldman, Dave Gossard, Richard F. Riesenfeld, Herbert B. Voelcker, Tony Woo:
Solid modeling(Panel Session). SIGGRAPH 1983: 163-165
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:17 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint