default search action
Ilias Diakonikolas
Person information
- affiliation (2019-present): University of Wisconsin, Madison, WI, USA
- affiliation (2016-2019): University Southern California, CA, USA
- affiliation (2012-2015): University of Edinburgh, UK
- affiliation (2010-2012): University of California, Berkeley, CA, USA
- affiliation (2004-2010): Columbia University, New York City, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c147]Ilias Diakonikolas, Daniel M. Kane, Sihan Liu, Nikos Zarifis:
Testable Learning of General Halfspaces with Adversarial Label Noise. COLT 2024: 1308-1335 - [c146]Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, Nikos Zarifis:
Statistical Query Lower Bounds for Learning Truncated Gaussians. COLT 2024: 1336-1363 - [c145]Ilias Diakonikolas, Daniel M. Kane:
Efficiently Learning One-Hidden-Layer ReLU Networks via SchurPolynomials. COLT 2024: 1364-1378 - [c144]Xuefeng Du, Zhen Fang, Ilias Diakonikolas, Yixuan Li:
How Does Unlabeled Data Provably Help Out-of-Distribution Detection? ICLR 2024 - [c143]Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination. ICML 2024 - [c142]Ilias Diakonikolas, Mingchen Ma, Lisheng Ren, Christos Tzamos:
Fast Co-Training under Weak Dependence via Stream-Based Active Learning. ICML 2024 - [c141]Nikos Zarifis, Puqian Wang, Ilias Diakonikolas, Jelena Diakonikolas:
Robustly Learning Single-Index Models via Alignment Sharpness. ICML 2024 - [c140]Daniel M. Kane, Ilias Diakonikolas, Hanshen Xiao, Sihan Liu:
Online Robust Mean Estimation. SODA 2024: 3197-3235 - [c139]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Sihan Liu, Nikos Zarifis:
Super Non-singular Decompositions of Polynomials and Their Application to Robustly Learning Low-Degree PTFs. STOC 2024: 152-159 - [c138]Ilias Diakonikolas, Daniel M. Kane, Sihan Liu:
Testing Closeness of Multivariate Distributions via Ramsey Theory. STOC 2024: 340-347 - [i160]Xuefeng Du, Zhen Fang, Ilias Diakonikolas, Yixuan Li:
How Does Unlabeled Data Provably Help Out-of-Distribution Detection? CoRR abs/2402.03502 (2024) - [i159]Nikos Zarifis, Puqian Wang, Ilias Diakonikolas, Jelena Diakonikolas:
Robustly Learning Single-Index Models via Alignment Sharpness. CoRR abs/2402.17756 (2024) - [i158]Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, Nikos Zarifis:
Statistical Query Lower Bounds for Learning Truncated Gaussians. CoRR abs/2403.02300 (2024) - [i157]Ilias Diakonikolas, Daniel Kane, Lisheng Ren, Yuxin Sun:
SQ Lower Bounds for Non-Gaussian Component Analysis with Weaker Assumptions. CoRR abs/2403.04744 (2024) - [i156]Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
Robust Sparse Estimation for Gaussians with Optimal Error under Huber Contamination. CoRR abs/2403.10416 (2024) - [i155]Shuyao Li, Yu Cheng, Ilias Diakonikolas, Jelena Diakonikolas, Rong Ge, Stephen J. Wright:
Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing. CoRR abs/2403.10547 (2024) - [i154]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Sihan Liu, Nikos Zarifis:
Super Non-singular Decompositions of Polynomials and their Application to Robustly Learning Low-degree PTFs. CoRR abs/2404.00529 (2024) - [i153]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Online Learning of Halfspaces with Massart Noise. CoRR abs/2405.12958 (2024) - [i152]Ilias Diakonikolas, Sushrut Karmalkar, Jongho Park, Christos Tzamos:
First Order Stochastic Optimization with Oblivious Noise. CoRR abs/2408.02090 (2024) - [i151]Ilias Diakonikolas, Daniel M. Kane, Sihan Liu, Nikos Zarifis:
Efficient Testable Learning of General Halfspaces with Adversarial Label Noise. CoRR abs/2408.17165 (2024) - 2023
- [c137]Ilias Diakonikolas, Jelena Diakonikolas, Daniel M. Kane, Puqian Wang, Nikos Zarifis:
Information-Computation Tradeoffs for Learning Margin Halfspaces with Random Classification Noise. COLT 2023: 2211-2239 - [c136]Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, Nikos Zarifis:
SQ Lower Bounds for Learning Mixtures of Separated and Bounded Covariance Gaussians. COLT 2023: 2319-2349 - [c135]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Self-Directed Linear Classification. COLT 2023: 2919-2947 - [c134]Daniel Kane, Ilias Diakonikolas:
A Nearly Tight Bound for Fitting an Ellipsoid to Gaussian Random Points. COLT 2023: 3014-3028 - [c133]Ilias Diakonikolas, Daniel M. Kane, Yuetian Luo, Anru Zhang:
Statistical and Computational Limits for Tensor-on-Tensor Association Detection. COLT 2023: 5260-5310 - [c132]Ilias Diakonikolas, Sushrut Karmalkar, Jongho Park, Christos Tzamos:
Distribution-Independent Regression for Generalized Linear Models with Oblivious Corruptions. COLT 2023: 5453-5475 - [c131]Ilias Diakonikolas, Daniel Kane, Ankit Pensia, Thanasis Pittas:
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA. ICML 2023: 7886-7921 - [c130]Ilias Diakonikolas, Daniel Kane, Lisheng Ren:
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals. ICML 2023: 7922-7938 - [c129]Puqian Wang, Nikos Zarifis, Ilias Diakonikolas, Jelena Diakonikolas:
Robustly Learning a Single Neuron via Sharpness. ICML 2023: 36541-36577 - [c128]Ilias Diakonikolas, Jelena Diakonikolas, Daniel Kane, Puqian Wang, Nikos Zarifis:
Near-Optimal Bounds for Learning Gaussian Halfspaces with Random Classification Noise. NeurIPS 2023 - [c127]Ilias Diakonikolas, Daniel Kane, Vasilis Kontonis, Sihan Liu, Nikos Zarifis:
Efficient Testable Learning of Halfspaces with Adversarial Label Noise. NeurIPS 2023 - [c126]Ilias Diakonikolas, Daniel Kane, Jasper C. H. Lee, Ankit Pensia, Thanasis Pittas:
A Spectral Algorithm for List-Decodable Covariance Estimation in Relative Frobenius Norm. NeurIPS 2023 - [c125]Ilias Diakonikolas, Daniel Kane, Ankit Pensia, Thanasis Pittas:
Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean Estimation and Linear Regression. NeurIPS 2023 - [c124]Ilias Diakonikolas, Sushrut Karmalkar, Jongho Park, Christos Tzamos:
First Order Stochastic Optimization with Oblivious Noise. NeurIPS 2023 - [c123]Ilias Diakonikolas, Daniel Kane, Lisheng Ren, Yuxin Sun:
SQ Lower Bounds for Non-Gaussian Component Analysis with Weaker Assumptions. NeurIPS 2023 - [c122]Ilias Diakonikolas, Daniel Kane, Yuxin Sun:
SQ Lower Bounds for Learning Mixtures of Linear Classifiers. NeurIPS 2023 - [c121]Shuyao Li, Yu Cheng, Ilias Diakonikolas, Jelena Diakonikolas, Rong Ge, Stephen J. Wright:
Robust Second-Order Nonconvex Optimization and Its Application to Low Rank Matrix Sensing. NeurIPS 2023 - [c120]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia:
Gaussian Mean Testing Made Simple. SOSA 2023: 348-352 - [c119]Ilias Diakonikolas, Christos Tzamos, Daniel M. Kane:
A Strongly Polynomial Algorithm for Approximate Forster Transforms and Its Application to Halfspace Learning. STOC 2023: 1741-1754 - [i150]Ilias Diakonikolas, Daniel M. Kane, Lisheng Ren:
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals. CoRR abs/2302.06512 (2023) - [i149]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Sihan Liu, Nikos Zarifis:
Efficient Testable Learning of Halfspaces with Adversarial Label Noise. CoRR abs/2303.05485 (2023) - [i148]Ilias Diakonikolas, Daniel M. Kane, Jasper C. H. Lee, Ankit Pensia, Thanasis Pittas:
A Spectral Algorithm for List-Decodable Covariance Estimation in Relative Frobenius Norm. CoRR abs/2305.00966 (2023) - [i147]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas:
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA. CoRR abs/2305.02544 (2023) - [i146]Puqian Wang, Nikos Zarifis, Ilias Diakonikolas, Jelena Diakonikolas:
Robustly Learning a Single Neuron via Sharpness. CoRR abs/2306.07892 (2023) - [i145]Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, Nikos Zarifis:
SQ Lower Bounds for Learning Bounded Covariance GMMs. CoRR abs/2306.13057 (2023) - [i144]Ilias Diakonikolas, Jelena Diakonikolas, Daniel M. Kane, Puqian Wang, Nikos Zarifis:
Information-Computation Tradeoffs for Learning Margin Halfspaces with Random Classification Noise. CoRR abs/2306.16352 (2023) - [i143]Ilias Diakonikolas, Jelena Diakonikolas, Daniel M. Kane, Puqian Wang, Nikos Zarifis:
Near-Optimal Bounds for Learning Gaussian Halfspaces with Random Classification Noise. CoRR abs/2307.08438 (2023) - [i142]Ilias Diakonikolas, Daniel M. Kane:
Efficiently Learning One-Hidden-Layer ReLU Networks via Schur Polynomials. CoRR abs/2307.12840 (2023) - [i141]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Self-Directed Linear Classification. CoRR abs/2308.03142 (2023) - [i140]Ilias Diakonikolas, Sushrut Karmalkar, Jongho Park, Christos Tzamos:
Distribution-Independent Regression for Generalized Linear Models with Oblivious Corruptions. CoRR abs/2309.11657 (2023) - [i139]Ilias Diakonikolas, Daniel M. Kane, Yuxin Sun:
SQ Lower Bounds for Learning Mixtures of Linear Classifiers. CoRR abs/2310.11876 (2023) - [i138]Daniel M. Kane, Ilias Diakonikolas, Hanshen Xiao, Sihan Liu:
Online Robust Mean Estimation. CoRR abs/2310.15932 (2023) - [i137]Ilias Diakonikolas, Daniel M. Kane, Sihan Liu:
Testing Closeness of Multivariate Distributions via Ramsey Theory. CoRR abs/2311.13154 (2023) - [i136]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas:
Near-Optimal Algorithms for Gaussians with Huber Contamination: Mean Estimation and Linear Regression. CoRR abs/2312.01547 (2023) - [i135]Ilias Diakonikolas, Daniel M. Kane, Jasper C. H. Lee, Thanasis Pittas:
Clustering Mixtures of Bounded Covariance Distributions Under Optimal Separation. CoRR abs/2312.11769 (2023) - [i134]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Agnostically Learning Multi-index Models with Queries. CoRR abs/2312.16616 (2023) - 2022
- [j21]Xi Chen, Ilias Diakonikolas, Anthi Orfanou, Dimitris Paparas, Xiaorui Sun, Mihalis Yannakakis:
On the Complexity of Optimal Lottery Pricing and Randomized Mechanisms for a Unit-Demand Buyer. SIAM J. Comput. 51(3): 492-548 (2022) - [c118]Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi, Lisheng Ren:
Hardness of Learning a Single Neuron with Adversarial Label Noise. AISTATS 2022: 8199-8213 - [c117]Ilias Diakonikolas, Chrystalla Pavlou, John Peebles, Alistair Stewart:
Efficient Approximation Algorithms for the Inverse Semivalue Problem. AAMAS 2022: 354-362 - [c116]Ilias Diakonikolas, Daniel M. Kane, Yuxin Sun:
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models. COLT 2022: 3936-3978 - [c115]Ilias Diakonikolas, Daniel Kane:
Near-Optimal Statistical Query Hardness of Learning Halfspaces with Massart Noise. COLT 2022: 4258-4282 - [c114]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Learning a Single Neuron with Adversarial Label Noise via Gradient Descent. COLT 2022: 4313-4361 - [c113]Ilias Diakonikolas, Daniel Kane:
Non-Gaussian Component Analysis via Lattice Basis Reduction. COLT 2022: 4535-4547 - [c112]Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
Robust Sparse Mean Estimation via Sum of Squares. COLT 2022: 4703-4763 - [c111]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas:
Streaming Algorithms for High-Dimensional Robust Statistics. ICML 2022: 5061-5117 - [c110]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Learning General Halfspaces with Adversarial Label Noise via Online Gradient Descent. ICML 2022: 5118-5141 - [c109]Yu Cheng, Ilias Diakonikolas, Rong Ge, Shivam Gupta, Daniel Kane, Mahdi Soltanolkotabi:
Outlier-Robust Sparse Estimation via Non-Convex Optimization. NeurIPS 2022 - [c108]Clément L. Canonne, Ilias Diakonikolas, Daniel Kane, Sihan Liu:
Nearly-Tight Bounds for Testing Histogram Distributions. NeurIPS 2022 - [c107]Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering. NeurIPS 2022 - [c106]Ilias Diakonikolas, Daniel Kane, Jasper C. H. Lee, Ankit Pensia:
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions. NeurIPS 2022 - [c105]Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi, Lisheng Ren:
Cryptographic Hardness of Learning Halfspaces with Massart Noise. NeurIPS 2022 - [c104]Ilias Diakonikolas, Daniel Kane, Lisheng Ren, Yuxin Sun:
SQ Lower Bounds for Learning Single Neurons with Massart Noise. NeurIPS 2022 - [c103]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Learning general halfspaces with general Massart noise under the Gaussian distribution. STOC 2022: 874-885 - [c102]Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K. Kothari, Santosh S. Vempala:
Robustly learning mixtures of k arbitrary Gaussians. STOC 2022: 1234-1247 - [c101]Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian:
Clustering mixture models in almost-linear time via list-decodable mean estimation. STOC 2022: 1262-1275 - [i133]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas:
Streaming Algorithms for High-Dimensional Robust Statistics. CoRR abs/2204.12399 (2022) - [i132]Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
Robust Sparse Mean Estimation via Sum of Squares. CoRR abs/2206.03441 (2022) - [i131]Ilias Diakonikolas, Daniel M. Kane, Yuxin Sun:
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models. CoRR abs/2206.04589 (2022) - [i130]Ilias Diakonikolas, Daniel M. Kane, Sushrut Karmalkar, Ankit Pensia, Thanasis Pittas:
List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering. CoRR abs/2206.05245 (2022) - [i129]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Learning a Single Neuron with Adversarial Label Noise via Gradient Descent. CoRR abs/2206.08918 (2022) - [i128]Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Sihan Liu:
Near-Optimal Bounds for Testing Histogram Distributions. CoRR abs/2207.06596 (2022) - [i127]Ilias Diakonikolas, Daniel M. Kane, Pasin Manurangsi, Lisheng Ren:
Cryptographic Hardness of Learning Halfspaces with Massart Noise. CoRR abs/2207.14266 (2022) - [i126]Ilias Diakonikolas, Daniel M. Kane, Lisheng Ren, Yuxin Sun:
SQ Lower Bounds for Learning Single Neurons with Massart Noise. CoRR abs/2210.09949 (2022) - [i125]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia:
Gaussian Mean Testing Made Simple. CoRR abs/2210.13706 (2022) - [i124]Ilias Diakonikolas, Daniel M. Kane, Jasper C. H. Lee, Ankit Pensia:
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions. CoRR abs/2211.16333 (2022) - [i123]Ilias Diakonikolas, Christos Tzamos, Daniel M. Kane:
A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning. CoRR abs/2212.03008 (2022) - [i122]Daniel M. Kane, Ilias Diakonikolas:
A Nearly Tight Bound for Fitting an Ellipsoid to Gaussian Random Points. CoRR abs/2212.11221 (2022) - [i121]Ilias Diakonikolas, Christos Tzamos, Daniel Kane:
A Strongly Polynomial Algorithm for Approximate Forster Transforms and its Application to Halfspace Learning. Electron. Colloquium Comput. Complex. TR22 (2022) - 2021
- [j20]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robustness meets algorithms. Commun. ACM 64(5): 107-115 (2021) - [c100]Ilias Diakonikolas, Daniel M. Kane:
The Sample Complexity of Robust Covariance Testing. COLT 2021: 1511-1521 - [c99]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Agnostic Proper Learning of Halfspaces under Gaussian Marginals. COLT 2021: 1522-1551 - [c98]Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, Nikos Zarifis:
The Optimality of Polynomial Regression for Agnostic Learning under Gaussian Marginals in the SQ Model. COLT 2021: 1552-1584 - [c97]Ilias Diakonikolas, Russell Impagliazzo, Daniel M. Kane, Rex Lei, Jessica Sorrell, Christos Tzamos:
Boosting in the Presence of Massart Noise. COLT 2021: 1585-1644 - [c96]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart, Yuxin Sun:
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition. COLT 2021: 1645-1682 - [c95]Stephen Macke, Maryam Aliakbarpour, Ilias Diakonikolas, Aditya G. Parameswaran, Ronitt Rubinfeld:
Rapid Approximate Aggregation with Distribution-Sensitive Interval Guarantees. ICDE 2021: 1703-1714 - [c94]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, Nikos Zarifis:
Learning Online Algorithms with Distributional Advice. ICML 2021: 2687-2696 - [c93]Ilias Diakonikolas, Daniel Kane, Ankit Pensia, Thanasis Pittas, Alistair Stewart:
Statistical Query Lower Bounds for List-Decodable Linear Regression. NeurIPS 2021: 3191-3204 - [c92]Ilias Diakonikolas, Daniel Kane, Christos Tzamos:
Forster Decomposition and Learning Halfspaces with Noise. NeurIPS 2021: 7732-7744 - [c91]Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian:
List-Decodable Mean Estimation in Nearly-PCA Time. NeurIPS 2021: 10195-10208 - [c90]Ilias Diakonikolas, Jongho Park, Christos Tzamos:
ReLU Regression with Massart Noise. NeurIPS 2021: 25891-25903 - [c89]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Efficiently learning halfspaces with Tsybakov noise. STOC 2021: 88-101 - [c88]Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, John Peebles, Eric Price:
Optimal testing of discrete distributions with high probability. STOC 2021: 542-555 - [i120]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart, Yuxin Sun:
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition. CoRR abs/2102.02171 (2021) - [i119]Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, Nikos Zarifis:
The Optimality of Polynomial Regression for Agnostic Learning under Gaussian Marginals. CoRR abs/2102.04401 (2021) - [i118]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Agnostic Proper Learning of Halfspaces under Gaussian Marginals. CoRR abs/2102.05629 (2021) - [i117]Ilias Diakonikolas, Russell Impagliazzo, Daniel Kane, Rex Lei, Jessica Sorrell, Christos Tzamos:
Boosting in the Presence of Massart Noise. CoRR abs/2106.07779 (2021) - [i116]Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian:
Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean Estimation. CoRR abs/2106.08537 (2021) - [i115]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia, Thanasis Pittas, Alistair Stewart:
Statistical Query Lower Bounds for List-Decodable Linear Regression. CoRR abs/2106.09689 (2021) - [i114]Ilias Diakonikolas, Daniel M. Kane, Christos Tzamos:
Forster Decomposition and Learning Halfspaces with Noise. CoRR abs/2107.05582 (2021) - [i113]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Threshold Phenomena in Learning Halfspaces with Massart Noise. CoRR abs/2108.08767 (2021) - [i112]Ilias Diakonikolas, Jongho Park, Christos Tzamos:
ReLU Regression with Massart Noise. CoRR abs/2109.04623 (2021) - [i111]Yu Cheng, Ilias Diakonikolas, Daniel M. Kane, Rong Ge, Shivam Gupta, Mahdi Soltanolkotabi:
Outlier-Robust Sparse Estimation via Non-Convex Optimization. CoRR abs/2109.11515 (2021) - [i110]Ilias Diakonikolas, Daniel M. Kane:
Non-Gaussian Component Analysis via Lattice Basis Reduction. CoRR abs/2112.09104 (2021) - 2020
- [j19]David S. Johnson, Lee Breslau, Ilias Diakonikolas, Nick Duffield, Yu Gu, MohammadTaghi Hajiaghayi, Howard J. Karloff, Mauricio G. C. Resende, Subhabrata Sen:
Near-Optimal Disjoint-Path Facility Location Through Set Cover by Pairs. Oper. Res. 68(3): 896-926 (2020) - [j18]Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Testing Bayesian Networks. IEEE Trans. Inf. Theory 66(5): 3132-3170 (2020) - [c87]Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R. Klivans, Mahdi Soltanolkotabi:
Approximation Schemes for ReLU Regression. COLT 2020: 1452-1485 - [c86]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Learning Halfspaces with Massart Noise Under Structured Distributions. COLT 2020: 1486-1513 - [c85]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Nikos Zarifis:
Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Networks. COLT 2020: 1514-1539 - [c84]Ainesh Bakshi, Ilias Diakonikolas, Samuel B. Hopkins, Daniel Kane, Sushrut Karmalkar, Pravesh K. Kothari:
Outlier-Robust Clustering of Gaussians and Other Non-Spherical Mixtures. FOCS 2020: 149-159 - [c83]Ilias Diakonikolas, Daniel M. Kane:
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models. FOCS 2020: 184-195 - [c82]Yu Cheng, Ilias Diakonikolas, Rong Ge, Mahdi Soltanolkotabi:
High-dimensional Robust Mean Estimation via Gradient Descent. ICML 2020: 1768-1778 - [c81]Omar Montasser, Surbhi Goel, Ilias Diakonikolas, Nathan Srebro:
Efficiently Learning Adversarially Robust Halfspaces with Noise. ICML 2020: 7010-7021 - [c80]Ilias Diakonikolas, Daniel Kane, Daniel Kongsgaard:
List-Decodable Mean Estimation via Iterative Multi-Filtering. NeurIPS 2020 - [c79]Ilias Diakonikolas, Daniel M. Kane, Pasin Manurangsi:
The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise. NeurIPS 2020 - [c78]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia:
Outlier Robust Mean Estimation with Subgaussian Rates via Stability. NeurIPS 2020 - [c77]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Non-Convex SGD Learns Halfspaces with Adversarial Label Noise. NeurIPS 2020 - [c76]Ilias Diakonikolas, Daniel Kane, Nikos Zarifis:
Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals. NeurIPS 2020 - [p2]Ilias Diakonikolas, Daniel M. Kane:
Robust High-Dimensional Statistics. Beyond the Worst-Case Analysis of Algorithms 2020: 382-402 - [i109]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Learning Halfspaces with Massart Noise Under Structured Distributions. CoRR abs/2002.05632 (2020) - [i108]Ilias Diakonikolas, Jerry Li, Anastasia Voloshinov:
Efficient Algorithms for Multidimensional Segmented Regression. CoRR abs/2003.11086 (2020) - [i107]Yu Cheng, Ilias Diakonikolas, Rong Ge, Mahdi Soltanolkotabi:
High-Dimensional Robust Mean Estimation via Gradient Descent. CoRR abs/2005.01378 (2020) - [i106]Ilias Diakonikolas, Samuel B. Hopkins, Daniel Kane, Sushrut Karmalkar:
Robustly Learning any Clusterable Mixture of Gaussians. CoRR abs/2005.06417 (2020) - [i105]Omar Montasser, Surbhi Goel, Ilias Diakonikolas, Nathan Srebro:
Efficiently Learning Adversarially Robust Halfspaces with Noise. CoRR abs/2005.07652 (2020) - [i104]Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R. Klivans, Mahdi Soltanolkotabi:
Approximation Schemes for ReLU Regression. CoRR abs/2005.12844 (2020) - [i103]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Learning Halfspaces with Tsybakov Noise. CoRR abs/2006.06467 (2020) - [i102]Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
Non-Convex SGD Learns Halfspaces with Adversarial Label Noise. CoRR abs/2006.06742 (2020) - [i101]Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard:
List-Decodable Mean Estimation via Iterative Multi-Filtering. CoRR abs/2006.10715 (2020) - [i100]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Nikos Zarifis:
Algorithms and SQ Lower Bounds for PAC Learning One-Hidden-Layer ReLU Networks. CoRR abs/2006.12476 (2020) - [i99]Ilias Diakonikolas, Daniel M. Kane, Nikos Zarifis:
Near-Optimal SQ Lower Bounds for Agnostically Learning Halfspaces and ReLUs under Gaussian Marginals. CoRR abs/2006.16200 (2020) - [i98]Ilias Diakonikolas, Daniel M. Kane, Pasin Manurangsi:
The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise. CoRR abs/2007.15220 (2020) - [i97]Ilias Diakonikolas, Daniel M. Kane, Ankit Pensia:
Outlier Robust Mean Estimation with Subgaussian Rates via Stability. CoRR abs/2007.15618 (2020) - [i96]Stephen Macke, Maryam Aliakbarpour, Ilias Diakonikolas, Aditya G. Parameswaran, Ronitt Rubinfeld:
Rapid Approximate Aggregation with Distribution-Sensitive Interval Guarantees. CoRR abs/2008.03891 (2020) - [i95]Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, John Peebles, Eric Price:
Optimal Testing of Discrete Distributions with High Probability. CoRR abs/2009.06540 (2020) - [i94]Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis:
A Polynomial Time Algorithm for Learning Halfspaces with Tsybakov Noise. CoRR abs/2010.01705 (2020) - [i93]Ilias Diakonikolas, Daniel M. Kane, Daniel Kongsgaard, Jerry Li, Kevin Tian:
List-Decodable Mean Estimation in Nearly-PCA Time. CoRR abs/2011.09973 (2020) - [i92]Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K. Kothari, Santosh S. Vempala:
Robustly Learning Mixtures of k Arbitrary Gaussians. CoRR abs/2012.02119 (2020) - [i91]Ilias Diakonikolas, Daniel M. Kane:
Small Covers for Near-Zero Sets of Polynomials and Learning Latent Variable Models. CoRR abs/2012.07774 (2020) - [i90]Ilias Diakonikolas, Daniel M. Kane:
Hardness of Learning Halfspaces with Massart Noise. CoRR abs/2012.09720 (2020) - [i89]Ilias Diakonikolas, Daniel M. Kane:
The Sample Complexity of Robust Covariance Testing. CoRR abs/2012.15802 (2020) - [i88]Ilias Diakonikolas, Themis Gouleakis, Daniel Kane, John Peebles, Eric Price:
Optimal Testing of Discrete Distributions with High Probability. Electron. Colloquium Comput. Complex. TR20 (2020)
2010 – 2019
- 2019
- [j17]Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price:
Collision-Based Testers are Optimal for Uniformity and Closeness. Chic. J. Theor. Comput. Sci. 2019 (2019) - [j16]Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robust Estimators in High-Dimensions Without the Computational Intractability. SIAM J. Comput. 48(2): 742-864 (2019) - [c75]Ilias Diakonikolas, Chrystalla Pavlou:
On the Complexity of the Inverse Semivalue Problem for Weighted Voting Games. AAAI 2019: 1869-1876 - [c74]Yu Cheng, Ilias Diakonikolas, Rong Ge, David P. Woodruff:
Faster Algorithms for High-Dimensional Robust Covariance Estimation. COLT 2019: 727-757 - [c73]Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, Sankeerth Rao:
Communication and Memory Efficient Testing of Discrete Distributions. COLT 2019: 1070-1106 - [c72]Ilias Diakonikolas, Daniel M. Kane, John Peebles:
Testing Identity of Multidimensional Histograms. COLT 2019: 1107-1131 - [c71]Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, Alistair Stewart:
Sever: A Robust Meta-Algorithm for Stochastic Optimization. ICML 2019: 1596-1606 - [c70]Ilias Diakonikolas, Themis Gouleakis, Christos Tzamos:
Distribution-Independent PAC Learning of Halfspaces with Massart Noise. NeurIPS 2019: 4751-4762 - [c69]Kai Zheng, Haipeng Luo, Ilias Diakonikolas, Liwei Wang:
Equipping Experts/Bandits with Long-term Memory. NeurIPS 2019: 5927-5937 - [c68]Brian Axelrod, Ilias Diakonikolas, Alistair Stewart, Anastasios Sidiropoulos, Gregory Valiant:
A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families. NeurIPS 2019: 7721-7733 - [c67]Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi:
Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin. NeurIPS 2019: 10473-10484 - [c66]Ilias Diakonikolas, Daniel Kane, Sushrut Karmalkar, Eric Price, Alistair Stewart:
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering. NeurIPS 2019: 10688-10699 - [c65]Maryam Aliakbarpour, Ilias Diakonikolas, Daniel Kane, Ronitt Rubinfeld:
Private Testing of Distributions via Sample Permutations. NeurIPS 2019: 10877-10888 - [c64]Ilias Diakonikolas, Weihao Kong, Alistair Stewart:
Efficient Algorithms and Lower Bounds for Robust Linear Regression. SODA 2019: 2745-2754 - [c63]Yu Cheng, Ilias Diakonikolas, Rong Ge:
High-Dimensional Robust Mean Estimation in Nearly-Linear Time. SODA 2019: 2755-2771 - [c62]Ilias Diakonikolas, Daniel M. Kane:
Degree-푑 chow parameters robustly determine degree-푑 PTFs (and algorithmic applications). STOC 2019: 804-815 - [i87]Kai Zheng, Haipeng Luo, Ilias Diakonikolas, Liwei Wang:
Equipping Experts/Bandits with Long-term Memory. CoRR abs/1905.12950 (2019) - [i86]Yu Cheng, Ilias Diakonikolas, Rong Ge, David P. Woodruff:
Faster Algorithms for High-Dimensional Robust Covariance Estimation. CoRR abs/1906.04661 (2019) - [i85]Ilias Diakonikolas, Themis Gouleakis, Daniel M. Kane, Sankeerth Rao:
Communication and Memory Efficient Testing of Discrete Distributions. CoRR abs/1906.04709 (2019) - [i84]Ilias Diakonikolas, Themis Gouleakis, Christos Tzamos:
Distribution-Independent PAC Learning of Halfspaces with Massart Noise. CoRR abs/1906.10075 (2019) - [i83]Brian Axelrod, Ilias Diakonikolas, Anastasios Sidiropoulos, Alistair Stewart, Gregory Valiant:
A Polynomial Time Algorithm for Log-Concave Maximum Likelihood via Locally Exponential Families. CoRR abs/1907.08306 (2019) - [i82]Ilias Diakonikolas, Daniel M. Kane, Pasin Manurangsi:
Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin. CoRR abs/1908.11335 (2019) - [i81]Ilias Diakonikolas, Daniel M. Kane:
Recent Advances in Algorithmic High-Dimensional Robust Statistics. CoRR abs/1911.05911 (2019) - [i80]Ilias Diakonikolas, Sushrut Karmalkar, Daniel Kane, Eric Price, Alistair Stewart:
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering. CoRR abs/1911.08085 (2019) - 2018
- [j15]Xi Chen, Ilias Diakonikolas, Dimitris Paparas, Xiaorui Sun, Mihalis Yannakakis:
The complexity of optimal multidimensional pricing for a unit-demand buyer. Games Econ. Behav. 110: 139-164 (2018) - [j14]Clément L. Canonne, Ilias Diakonikolas, Themis Gouleakis, Ronitt Rubinfeld:
Testing Shape Restrictions of Discrete Distributions. Theory Comput. Syst. 62(1): 4-62 (2018) - [c61]Ilias Diakonikolas, Jerry Li, Ludwig Schmidt:
Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms. COLT 2018: 819-842 - [c60]Timothy Carpenter, Ilias Diakonikolas, Anastasios Sidiropoulos, Alistair Stewart:
Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities. COLT 2018: 1234-1262 - [c59]Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price:
Sample-Optimal Identity Testing with High Probability. ICALP 2018: 41:1-41:14 - [c58]Maryam Aliakbarpour, Ilias Diakonikolas, Ronitt Rubinfeld:
Differentially Private Identity and Equivalence Testing of Discrete Distributions. ICML 2018: 169-178 - [c57]Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Testing Conditional Independence of Discrete Distributions. ITA 2018: 1-57 - [c56]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Sharp Bounds for Generalized Uniformity Testing. NeurIPS 2018: 6204-6213 - [c55]Alistair Stewart, Ilias Diakonikolas, Clément L. Canonne:
Testing for Families of Distributions via the Fourier Transform. NeurIPS 2018: 10084-10095 - [c54]Yu Cheng, Ilias Diakonikolas, Daniel Kane, Alistair Stewart:
Robust Learning of Fixed-Structure Bayesian Networks. NeurIPS 2018: 10304-10316 - [c53]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently. SODA 2018: 2683-2702 - [c52]Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Testing conditional independence of discrete distributions. STOC 2018: 735-748 - [c51]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
List-decodable robust mean estimation and learning mixtures of spherical gaussians. STOC 2018: 1047-1060 - [c50]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Learning geometric concepts with nasty noise. STOC 2018: 1061-1073 - [e1]Ilias Diakonikolas, David Kempe, Monika Henzinger:
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. ACM 2018 [contents] - [i79]Ilias Diakonikolas, Jerry Li, Ludwig Schmidt:
Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms. CoRR abs/1802.08513 (2018) - [i78]Timothy Carpenter, Ilias Diakonikolas, Anastasios Sidiropoulos, Alistair Stewart:
Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities. CoRR abs/1802.10575 (2018) - [i77]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt, Alistair Stewart:
Sever: A Robust Meta-Algorithm for Stochastic Optimization. CoRR abs/1803.02815 (2018) - [i76]Ilias Diakonikolas, Daniel M. Kane, John Peebles:
Testing Identity of Multidimensional Histograms. CoRR abs/1804.03636 (2018) - [i75]Ilias Diakonikolas, Weihao Kong, Alistair Stewart:
Efficient Algorithms and Lower Bounds for Robust Linear Regression. CoRR abs/1806.00040 (2018) - [i74]Ilias Diakonikolas, Daniel M. Kane:
Degree-d Chow Parameters Robustly Determine Degree-d PTFs (and Algorithmic Applications). CoRR abs/1811.03491 (2018) - [i73]Yu Cheng, Ilias Diakonikolas, Rong Ge:
High-Dimensional Robust Mean Estimation in Nearly-Linear Time. CoRR abs/1811.09380 (2018) - [i72]Ilias Diakonikolas, Anastasios Sidiropoulos, Alistair Stewart:
A Polynomial Time Algorithm for Maximum Likelihood Estimation of Multivariate Log-concave Densities. CoRR abs/1812.05524 (2018) - [i71]Ilias Diakonikolas, Chrystalla Pavlou:
On the Complexity of the Inverse Semivalue Problem for Weighted Voting Games. CoRR abs/1812.11712 (2018) - [i70]Ilias Diakonikolas, Daniel Kane:
Degree-$d$ Chow Parameters Robustly Determine Degree-$d$ PTFs (and Algorithmic Applications). Electron. Colloquium Comput. Complex. TR18 (2018) - 2017
- [j13]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
The Inverse Shapley value problem. Games Econ. Behav. 105: 122-147 (2017) - [c49]Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Testing Bayesian Networks. COLT 2017: 370-448 - [c48]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Learning Multivariate Log-concave Distributions. COLT 2017: 711-727 - [c47]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Statistical Query Lower Bounds for Robust Estimation of High-Dimensional Gaussians and Gaussian Mixtures. FOCS 2017: 73-84 - [c46]Ilias Diakonikolas, Daniel M. Kane, Vladimir Nikishkin:
Near-Optimal Closeness Testing of Discrete Histogram Distributions. ICALP 2017: 8:1-8:15 - [c45]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Being Robust (in High Dimensions) Can Be Practical. ICML 2017: 999-1008 - [c44]Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, Krzysztof Onak, Ludwig Schmidt:
Communication-Efficient Distributed Learning of Discrete Distributions. NIPS 2017: 6391-6401 - [c43]Yu Cheng, Ilias Diakonikolas, Alistair Stewart:
Playing Anonymous Games using Simple Strategies. SODA 2017: 616-631 - [c42]Jayadev Acharya, Ilias Diakonikolas, Jerry Li, Ludwig Schmidt:
Sample-Optimal Density Estimation in Nearly-Linear Time. SODA 2017: 1278-1289 - [i69]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Being Robust (in High Dimensions) Can Be Practical. CoRR abs/1703.00893 (2017) - [i68]Ilias Diakonikolas, Daniel M. Kane, Vladimir Nikishkin:
Near-Optimal Closeness Testing of Discrete Histogram Distributions. CoRR abs/1703.01913 (2017) - [i67]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently. CoRR abs/1704.03866 (2017) - [i66]Clément L. Canonne, Ilias Diakonikolas, Alistair Stewart:
Fourier-Based Testing for Families of Distributions. CoRR abs/1706.05738 (2017) - [i65]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Learning Geometric Concepts with Nasty Noise. CoRR abs/1707.01242 (2017) - [i64]Maryam Aliakbarpour, Ilias Diakonikolas, Ronitt Rubinfeld:
Differentially Private Identity and Closeness Testing of Discrete Distributions. CoRR abs/1707.05497 (2017) - [i63]Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price:
Sample-Optimal Identity Testing with High Probability. CoRR abs/1708.02728 (2017) - [i62]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Sharp Bounds for Generalized Uniformity Testing. CoRR abs/1709.02087 (2017) - [i61]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians. CoRR abs/1711.07211 (2017) - [i60]Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Testing Conditional Independence of Discrete Distributions. CoRR abs/1711.11560 (2017) - [i59]Clément L. Canonne, Ilias Diakonikolas, Alistair Stewart:
Fourier-Based Testing for Families of Distributions. Electron. Colloquium Comput. Complex. TR17 (2017) - [i58]Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price:
Sample-Optimal Identity Testing with High Probability. Electron. Colloquium Comput. Complex. TR17 (2017) - [i57]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Sharp Bounds for Generalized Uniformity Testing. Electron. Colloquium Comput. Complex. TR17 (2017) - 2016
- [j12]Constantinos Daskalakis, Ilias Diakonikolas, Mihalis Yannakakis:
How Good is the Chord Algorithm? SIAM J. Comput. 45(3): 811-858 (2016) - [j11]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
A Robust Khintchine Inequality, and Algorithms for Computing Optimal Constants in Fourier Analysis and High-Dimensional Geometry. SIAM J. Discret. Math. 30(2): 1058-1094 (2016) - [c41]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Optimal Learning via the Fourier Transform for Sums of Independent Integer Random Variables. COLT 2016: 831-849 - [c40]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Properly Learning Poisson Binomial Distributions in Almost Polynomial Time. COLT 2016: 850-878 - [c39]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robust Estimators in High Dimensions without the Computational Intractability. FOCS 2016: 655-664 - [c38]Ilias Diakonikolas, Daniel M. Kane:
A New Approach for Testing Properties of Discrete Distributions. FOCS 2016: 685-694 - [c37]Jayadev Acharya, Ilias Diakonikolas, Jerry Li, Ludwig Schmidt:
Fast Algorithms for Segmented Regression. ICML 2016: 2878-2886 - [c36]Clément L. Canonne, Ilias Diakonikolas, Themis Gouleakis, Ronitt Rubinfeld:
Testing Shape Restrictions of Discrete Distributions. STACS 2016: 25:1-25:14 - [c35]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
The fourier transform of poisson multinomial distributions and its algorithmic applications. STOC 2016: 1060-1073 - [p1]Ilias Diakonikolas:
Learning Structured Distributions. Handbook of Big Data 2016: 267-283 - [i56]Ilias Diakonikolas, Daniel M. Kane:
A New Approach for Testing Properties of Discrete Distributions. CoRR abs/1601.05557 (2016) - [i55]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Zheng Li, Ankur Moitra, Alistair Stewart:
Robust Estimators in High Dimensions without the Computational Intractability. CoRR abs/1604.06443 (2016) - [i54]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Learning Multivariate Log-concave Distributions. CoRR abs/1605.08188 (2016) - [i53]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Efficient Robust Proper Learning of Log-concave Distributions. CoRR abs/1606.03077 (2016) - [i52]Yu Cheng, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Robust Learning of Fixed-Structure Bayesian Networks. CoRR abs/1606.07384 (2016) - [i51]Jayadev Acharya, Ilias Diakonikolas, Jerry Li, Ludwig Schmidt:
Fast Algorithms for Segmented Regression. CoRR abs/1607.03990 (2016) - [i50]Yu Cheng, Ilias Diakonikolas, Alistair Stewart:
Playing Anonymous Games using Simple Strategies. CoRR abs/1608.07336 (2016) - [i49]David S. Johnson, Lee Breslau, Ilias Diakonikolas, Nick G. Duffield, Yu Gu, MohammadTaghi Hajiaghayi, Howard J. Karloff, Mauricio G. C. Resende, Subhabrata Sen:
Near-Optimal Disjoint-Path Facility Location Through Set Cover by Pairs. CoRR abs/1611.01210 (2016) - [i48]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures. CoRR abs/1611.03473 (2016) - [i47]Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price:
Collision-based Testers are Optimal for Uniformity and Closeness. CoRR abs/1611.03579 (2016) - [i46]Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Testing Bayesian Networks. CoRR abs/1612.03156 (2016) - [i45]Ilias Diakonikolas, Themis Gouleakis, John Peebles, Eric Price:
Collision-based Testers are Optimal for Uniformity and Closeness. Electron. Colloquium Comput. Complex. TR16 (2016) - [i44]Ilias Diakonikolas, Daniel M. Kane:
A New Approach for Testing Properties of Discrete Distributions. Electron. Colloquium Comput. Complex. TR16 (2016) - [i43]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures. Electron. Colloquium Comput. Complex. TR16 (2016) - 2015
- [j10]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio:
Learning Poisson Binomial Distributions. Algorithmica 72(1): 316-357 (2015) - [j9]Ilias Diakonikolas, Ragesh Jaiswal, Rocco A. Servedio, Li-Yang Tan, Andrew Wan:
Noise Stable Halfspaces are Close to Very Small Juntas. Chic. J. Theor. Comput. Sci. 2015 (2015) - [c34]Ilias Diakonikolas, Daniel M. Kane, Vladimir Nikishkin:
Optimal Algorithms and Lower Bounds for Testing Closeness of Structured Distributions. FOCS 2015: 1183-1202 - [c33]Xi Chen, Ilias Diakonikolas, Anthi Orfanou, Dimitris Paparas, Xiaorui Sun, Mihalis Yannakakis:
On the Complexity of Optimal Lottery Pricing and Randomized Mechanisms. FOCS 2015: 1464-1479 - [c32]Ilias Diakonikolas, Moritz Hardt, Ludwig Schmidt:
Differentially Private Learning of Structured Discrete Distributions. NIPS 2015: 2566-2574 - [c31]Jayadev Acharya, Ilias Diakonikolas, Chinmay Hegde, Jerry Zheng Li, Ludwig Schmidt:
Fast and Near-Optimal Algorithms for Approximating Distributions by Histograms. PODS 2015: 249-263 - [c30]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
Learning from satisfying assignments. SODA 2015: 478-497 - [c29]Ilias Diakonikolas, Daniel M. Kane, Vladimir Nikishkin:
Testing Identity of Structured Distributions. SODA 2015: 1841-1854 - [i42]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Nearly Optimal Learning and Sparse Covers for Sums of Independent Integer Random Variables. CoRR abs/1505.00662 (2015) - [i41]Jayadev Acharya, Ilias Diakonikolas, Jerry Zheng Li, Ludwig Schmidt:
Sample-Optimal Density Estimation in Nearly-Linear Time. CoRR abs/1506.00671 (2015) - [i40]Clément L. Canonne, Ilias Diakonikolas, Themis Gouleakis, Ronitt Rubinfeld:
Testing Shape Restrictions of Discrete Distributions. CoRR abs/1507.03558 (2015) - [i39]Ilias Diakonikolas, Daniel M. Kane, Vladimir Nikishkin:
Optimal Algorithms and Lower Bounds for Testing Closeness of Structured Distributions. CoRR abs/1508.05538 (2015) - [i38]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
The Fourier Transform of Poisson Multinomial Distributions and its Algorithmic Applications. CoRR abs/1511.03592 (2015) - [i37]Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:
Properly Learning Poisson Binomial Distributions in Almost Polynomial Time. CoRR abs/1511.04066 (2015) - 2014
- [j8]Anindya De, Ilias Diakonikolas, Vitaly Feldman, Rocco A. Servedio:
Nearly Optimal Solutions for the Chow Parameters Problem and Low-Weight Approximation of Halfspaces. J. ACM 61(2): 11:1-11:36 (2014) - [j7]Ilias Diakonikolas, Prasad Raghavendra, Rocco A. Servedio, Li-Yang Tan:
Average Sensitivity and Noise Sensitivity of Polynomial Threshold Functions. SIAM J. Comput. 43(1): 231-253 (2014) - [j6]Ilias Diakonikolas, Rocco A. Servedio, Li-Yang Tan, Andrew Wan:
A Regularity Lemma and Low-Weight Approximators for Low-Degree Polynomial Threshold Functions. Theory Comput. 10: 27-53 (2014) - [j5]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio:
Learning k-Modal Distributions via Testing. Theory Comput. 10: 535-570 (2014) - [c28]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
Deterministic Approximate Counting for Juntas of Degree-2 Polynomial Threshold Functions. CCC 2014: 229-240 - [c27]Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, Xiaorui Sun:
Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms. NIPS 2014: 1844-1852 - [c26]Constantinos Daskalakis, Anindya De, Ilias Diakonikolas, Ankur Moitra, Rocco A. Servedio:
A Polynomial-time Approximation Scheme for Fault-tolerant Distributed Storage. SODA 2014: 628-644 - [c25]Siu On Chan, Ilias Diakonikolas, Paul Valiant, Gregory Valiant:
Optimal Algorithms for Testing Closeness of Discrete Distributions. SODA 2014: 1193-1203 - [c24]Xi Chen, Ilias Diakonikolas, Dimitris Paparas, Xiaorui Sun, Mihalis Yannakakis:
The Complexity of Optimal Multidimensional Pricing. SODA 2014: 1319-1328 - [c23]Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, Xiaorui Sun:
Efficient density estimation via piecewise polynomial approximation. STOC 2014: 604-613 - [i36]Ilias Diakonikolas, Daniel M. Kane, Vladimir Nikishkin:
Testing Identity of Structured Distributions. CoRR abs/1410.2266 (2014) - [i35]Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, Xiaorui Sun:
Near-Optimal Density Estimation in Near-Linear Time Using Variable-Width Histograms. CoRR abs/1411.0169 (2014) - 2013
- [j4]Ilias Diakonikolas, Rocco A. Servedio:
Improved Approximation of Linear Threshold Functions. Comput. Complex. 22(3): 623-677 (2013) - [c22]Constantinos Daskalakis, Ilias Diakonikolas, Ryan O'Donnell, Rocco A. Servedio, Li-Yang Tan:
Learning Sums of Independent Integer Random Variables. FOCS 2013: 217-226 - [c21]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
A Robust Khintchine Inequality, and Algorithms for Computing Optimal Constants in Fourier Analysis and High-Dimensional Geometry. ICALP (1) 2013: 376-387 - [c20]Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, Xiaorui Sun:
Learning mixtures of structured distributions over discrete domains. SODA 2013: 1380-1394 - [c19]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio, Gregory Valiant, Paul Valiant:
Testing k-Modal Distributions: Optimal Algorithms via Reductions. SODA 2013: 1833-1852 - [i34]Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, Xiaorui Sun:
Efficient Density Estimation via Piecewise Polynomial Approximation. CoRR abs/1305.3207 (2013) - [i33]Constantinos Daskalakis, Anindya De, Ilias Diakonikolas, Ankur Moitra, Rocco A. Servedio:
A Polynomial-time Approximation Scheme for Fault-tolerant Distributed Storage. CoRR abs/1307.3621 (2013) - [i32]Siu On Chan, Ilias Diakonikolas, Gregory Valiant, Paul Valiant:
Optimal Algorithms for Testing Closeness of Discrete Distributions. CoRR abs/1308.3946 (2013) - [i31]Constantinos Daskalakis, Ilias Diakonikolas, Mihalis Yannakakis:
How good is the Chord algorithm? CoRR abs/1309.7084 (2013) - [i30]Xi Chen, Ilias Diakonikolas, Dimitris Paparas, Xiaorui Sun, Mihalis Yannakakis:
The Complexity of Optimal Multidimensional Pricing. CoRR abs/1311.2138 (2013) - [i29]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
Deterministic Approximate Counting for Degree-$2$ Polynomial Threshold Functions. CoRR abs/1311.7105 (2013) - [i28]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
Deterministic Approximate Counting for Juntas of Degree-$2$ Polynomial Threshold Functions. CoRR abs/1311.7115 (2013) - [i27]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
Deterministic Approximate Counting for Juntas of Degree-2 Polynomial Threshold Functions. Electron. Colloquium Comput. Complex. TR13 (2013) - [i26]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
Deterministic Approximate Counting for Degree-2 Polynomial Threshold Functions. Electron. Colloquium Comput. Complex. TR13 (2013) - 2012
- [c18]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
The Inverse Shapley Value Problem. ICALP (1) 2012: 266-277 - [c17]Ilias Diakonikolas, Christos H. Papadimitriou, George Pierrakos, Yaron Singer:
Efficiency-Revenue Trade-Offs in Auctions. ICALP (2) 2012: 488-499 - [c16]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio:
Learning k-modal distributions via testing. SODA 2012: 1371-1385 - [c15]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio:
Learning poisson binomial distributions. STOC 2012: 709-728 - [c14]Anindya De, Ilias Diakonikolas, Vitaly Feldman, Rocco A. Servedio:
Nearly optimal solutions for the chow parameters problem and low-weight approximation of halfspaces. STOC 2012: 729-746 - [i25]Ilias Diakonikolas, Ragesh Jaiswal, Rocco A. Servedio, Li-Yang Tan, Andrew Wan:
On the Distribution of the Fourier Spectrum of Halfspaces. CoRR abs/1202.6680 (2012) - [i24]Ilias Diakonikolas, Christos H. Papadimitriou, George Pierrakos, Yaron Singer:
Efficiency-Revenue Trade-offs in Auctions. CoRR abs/1205.3077 (2012) - [i23]Anindya De, Ilias Diakonikolas, Vitaly Feldman, Rocco A. Servedio:
Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces. CoRR abs/1206.0985 (2012) - [i22]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
A robust Khintchine inequality, and algorithms for computing optimal constants in Fourier analysis and high-dimensional geometry. CoRR abs/1207.2229 (2012) - [i21]Siu On Chan, Ilias Diakonikolas, Rocco A. Servedio, Xiaorui Sun:
Learning mixtures of structured distributions over discrete domains. CoRR abs/1210.0864 (2012) - [i20]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
Inverse problems in approximate uniform generation. CoRR abs/1211.1722 (2012) - [i19]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
The Inverse Shapley Value Problem. CoRR abs/1212.5132 (2012) - [i18]Anindya De, Ilias Diakonikolas, Vitaly Feldman, Rocco A. Servedio:
Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces. Electron. Colloquium Comput. Complex. TR12 (2012) - [i17]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
Inverse Problems in Approximate Uniform Generation. Electron. Colloquium Comput. Complex. TR12 (2012) - [i16]Anindya De, Ilias Diakonikolas, Rocco A. Servedio:
The Inverse Shapley Value Problem. Electron. Colloquium Comput. Complex. TR12 (2012) - 2011
- [b1]Ilias Diakonikolas:
Approximation of Multiobjective Optimization Problems. Columbia University, USA, 2011 - [j3]Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, Andrew Wan:
Efficiently Testing Sparse GF(2) Polynomials. Algorithmica 61(3): 580-605 (2011) - [c13]Lee Breslau, Ilias Diakonikolas, Nick G. Duffield, Yu Gu, Mohammad Taghi Hajiaghayi, David S. Johnson, Howard J. Karloff, Mauricio G. C. Resende, Subhabrata Sen:
Disjoint-Path Facility Location: Theory and Practice. ALENEX 2011: 60-74 - [c12]Hung-Yi Liu, Ilias Diakonikolas, Michele Petracca, Luca P. Carloni:
Supervised design space exploration by compositional approximation of Pareto sets. DAC 2011: 399-404 - [c11]Ilias Diakonikolas, Ryan O'Donnell, Rocco A. Servedio, Yi Wu:
Hardness Results for Agnostically Learning Low-Degree Polynomial Threshold Functions. SODA 2011: 1590-1606 - [i15]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio:
Learning transformed product distributions. CoRR abs/1103.0598 (2011) - [i14]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio:
Learning $k$-Modal Distributions via Testing. CoRR abs/1107.2700 (2011) - [i13]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio:
Learning Poisson Binomial Distributions. CoRR abs/1107.2702 (2011) - [i12]Constantinos Daskalakis, Ilias Diakonikolas, Rocco A. Servedio, Gregory Valiant, Paul Valiant:
Testing $k$-Modal Distributions: Optimal Algorithms via Reductions. CoRR abs/1112.5659 (2011) - 2010
- [j2]Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, Emanuele Viola:
Bounded Independence Fools Halfspaces. SIAM J. Comput. 39(8): 3441-3462 (2010) - [c10]Ilias Diakonikolas, Rocco A. Servedio, Li-Yang Tan, Andrew Wan:
A Regularity Lemma, and Low-Weight Approximators, for Low-Degree Polynomial Threshold Functions. CCC 2010: 211-222 - [c9]Ilias Diakonikolas, Daniel M. Kane, Jelani Nelson:
Bounded Independence Fools Degree-2 Threshold Functions. FOCS 2010: 11-20 - [c8]Constantinos Daskalakis, Ilias Diakonikolas, Mihalis Yannakakis:
How Good is the Chord Algorithm?. SODA 2010: 978-991 - [c7]Ilias Diakonikolas, Prahladh Harsha, Adam R. Klivans, Raghu Meka, Prasad Raghavendra, Rocco A. Servedio, Li-Yang Tan:
Bounding the average sensitivity and noise sensitivity of polynomial threshold functions. STOC 2010: 533-542 - [i11]Ilias Diakonikolas, Ryan O'Donnell, Rocco A. Servedio, Yi Wu:
Hardness Results for Agnostically Learning Low-Degree Polynomial Threshold Functions. CoRR abs/1010.3484 (2010)
2000 – 2009
- 2009
- [j1]Ilias Diakonikolas, Mihalis Yannakakis:
Small Approximate Pareto Sets for Biobjective Shortest Paths and Other Problems. SIAM J. Comput. 39(4): 1340-1371 (2009) - [c6]Ilias Diakonikolas, Rocco A. Servedio:
Improved Approximation of Linear Threshold Functions. CCC 2009: 161-172 - [c5]Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, Emanuele Viola:
Bounded Independence Fools Halfspaces. FOCS 2009: 171-180 - [i10]Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, Emanuele Viola:
Bounded Independence Fools Halfspaces. CoRR abs/0902.3757 (2009) - [i9]Ilias Diakonikolas, Rocco A. Servedio, Li-Yang Tan, Andrew Wan:
A regularity lemma, and low-weight approximators, for low-degree polynomial threshold functions. CoRR abs/0909.4727 (2009) - [i8]Ilias Diakonikolas, Prasad Raghavendra, Rocco A. Servedio, Li-Yang Tan:
Average sensitivity and noise sensitivity of polynomial threshold functions. CoRR abs/0909.5011 (2009) - [i7]Ilias Diakonikolas, Rocco A. Servedio:
Improved Approximation of Linear Threshold Functions. CoRR abs/0910.3719 (2009) - [i6]Ilias Diakonikolas, Daniel M. Kane, Jelani Nelson:
Bounded Independence Fools Degree-2 Threshold Functions. CoRR abs/0911.3389 (2009) - [i5]Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, Emanuele Viola:
Bounded Independence Fools Halfspaces. Electron. Colloquium Comput. Complex. TR09 (2009) - [i4]Ilias Diakonikolas, Daniel M. Kane, Jelani Nelson:
Bounded Independence Fools Degree-2 Threshold Functions. Electron. Colloquium Comput. Complex. TR09 (2009) - 2008
- [c4]Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, Andrew Wan:
Efficiently Testing Sparse GF(2) Polynomials. ICALP (1) 2008: 502-514 - [c3]Ilias Diakonikolas, Mihalis Yannakakis:
Succinct approximate convex pareto curves. SODA 2008: 74-83 - [i3]Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Rocco A. Servedio, Andrew Wan:
Efficiently Testing Sparse GF(2) Polynomials. CoRR abs/0805.1765 (2008) - [i2]Ilias Diakonikolas, Mihalis Yannakakis:
Small Approximate Pareto Sets for Bi-objective Shortest Paths and Other Problems. CoRR abs/0805.2646 (2008) - 2007
- [c2]Ilias Diakonikolas, Mihalis Yannakakis:
Small Approximate Pareto Sets for Bi-objective Shortest Paths and Other Problems. APPROX-RANDOM 2007: 74-88 - [c1]Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A. Servedio, Andrew Wan:
Testing for Concise Representations. FOCS 2007: 549-558 - [i1]Ilias Diakonikolas, Homin K. Lee, Kevin Matulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A. Servedio, Andrew Wan:
Testing for Concise Representations. Electron. Colloquium Comput. Complex. TR07 (2007)
Coauthor Index
aka: Jerry Zheng Li
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:24 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint