default search action
Stéphan Clémençon
Person information
- affiliation: Telecom Paris, Palaiseau, France
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j23]Myrto Limnios, Nathan Noiry, Stéphan Clémençon:
Learning to rank anomalies: scalar performance criteria and maximization of rank statistics. Mach. Learn. 113(11): 8623-8653 (2024) - [j22]Florian Lamalle, Vincent Feuillard, Anne Sabourin, Stéphan Clémençon:
Weibull mixture estimation based on censored data with applications to clustering in reliability engineering. Qual. Reliab. Eng. Int. 40(8): 4247-4261 (2024) - [j21]Guillaume Staerman, Pavlo Mozharovskyi, Pierre Colombo, Stéphan Clémençon, Florence d'Alché-Buc:
A Pseudo-Metric between Probability Distributions based on Depth-Trimmed Regions. Trans. Mach. Learn. Res. 2024 (2024) - [c85]Myrto Limnios, Stéphan Clémençon:
On Ranking-based Tests of Independence. AISTATS 2024: 577-585 - [c84]Anas Himmi, Ekhine Irurozki, Nathan Noiry, Stéphan Clémençon, Pierre Colombo:
Towards More Robust NLP System Evaluation: Handling Missing Scores in Benchmarks. EMNLP (Findings) 2024: 11759-11785 - [c83]Qi Gan, Sao Mai Nguyen, Mounîm A. El-Yacoubi, Eric Fenaux, Stéphan Clémençon:
Human Pose Estimation Based Biomechanical Feature Extraction for Long Jumps. HSI 2024: 1-6 - [c82]Jean-Rémy Conti, Stéphan Clémençon:
Assessing Uncertainty in Similarity Scoring: Performance & Fairness in Face Recognition. ICLR 2024 - [c81]Isaia Andrenacci, Matteo Lonardi, Petros Ramantanis, Elie Awwad, Ekhiñe Irurozki, Stéphan Clémençon, Paolo Serena, Chiara Lasagni, Sébastien Bigo, Patricia Layec:
Machine Learning-Driven Low-Complexity Optical Power Optimization for Point-to-Point Links. OFC 2024: 1-3 - [i45]Emilia Siviero, Guillaume Staerman, Stéphan Clémençon, Thomas Moreau:
Flexible Parametric Inference for Space-Time Hawkes Processes. CoRR abs/2406.06849 (2024) - 2023
- [j20]Guillaume Staerman, Eric Adjakossa, Pavlo Mozharovskyi, Vera Hofer, Jayant Sen Gupta, Stéphan Clémençon:
Functional anomaly detection: a benchmark study. Int. J. Data Sci. Anal. 16(1): 101-117 (2023) - [c80]Morgane Goibert, Clément Calauzènes, Ekhine Irurozki, Stéphan Clémençon:
Robust Consensus in Ranking Data Analysis: Definitions, Properties and Computational Issues. ICML 2023: 11584-11597 - [c79]James Cheshire, Vincent Laurent, Stéphan Clémençon:
Active Bipartite Ranking. NeurIPS 2023 - [c78]Isaia Andrenacci, Matteo Lonardi, Petros Ramantanis, Elie Awwad, Ekhiñe Irurozki, Stéphan Clémençon:
Fast and accurate nonlinear interference in-band spectrum prediction for sparse channel allocation. ONDM 2023: 1-5 - [i44]Nathan Huet, Stéphan Clémençon, Anne Sabourin:
On Regression in Extreme Regions. CoRR abs/2303.03084 (2023) - [i43]Morgane Goibert, Clément Calauzènes, Ekhine Irurozki, Stéphan Clémençon:
Robust Consensus in Ranking Data Analysis: Definitions, Properties and Computational Issues. CoRR abs/2303.12878 (2023) - [i42]Anas Himmi, Ekhine Irurozki, Nathan Noiry, Stéphan Clémençon, Pierre Colombo:
Towards More Robust NLP System Evaluation: Handling Missing Scores in Benchmarks. CoRR abs/2305.10284 (2023) - 2022
- [j19]Guillaume Ausset, Stéphan Clémençon, François Portier:
Empirical Risk Minimization under Random Censorship. J. Mach. Learn. Res. 23: 5:1-5:59 (2022) - [c77]Morgane Goibert, Stéphan Clémençon, Ekhine Irurozki, Pavlo Mozharovskyi:
Statistical Depth Functions for Ranking Distributions: Definitions, Statistical Learning and Applications. AISTATS 2022: 10376-10406 - [c76]Jean-Rémy Conti, Nathan Noiry, Stéphan Clémençon, Vincent Despiegel, Stéphane Gentric:
Mitigating Gender Bias in Face Recognition using the von Mises-Fisher Mixture Model. ICML 2022: 4344-4369 - [c75]Pierre Colombo, Nathan Noiry, Ekhine Irurozki, Stéphan Clémençon:
What are the best Systems? New Perspectives on NLP Benchmarking. NeurIPS 2022 - [i41]Guillaume Staerman, Eric Adjakossa, Pavlo Mozharovskyi, Vera Hofer, Jayant Sen Gupta, Stéphan Clémençon:
Functional Anomaly Detection: a Benchmark Study. CoRR abs/2201.05115 (2022) - [i40]Mathieu Chambefort, Raphaël Butez, Emilie Chautru, Stéphan Clémençon:
Improving the quality control of seismic data through active learning. CoRR abs/2201.06616 (2022) - [i39]Morgane Goibert, Stéphan Clémençon, Ekhine Irurozki, Pavlo Mozharovskyi:
Statistical Depth Functions for Ranking Distributions: Definitions, Statistical Learning and Applications. CoRR abs/2201.08105 (2022) - [i38]Pierre Colombo, Nathan Noiry, Ekhine Irurozki, Stéphan Clémençon:
What are the best systems? New perspectives on NLP Benchmarking. CoRR abs/2202.03799 (2022) - [i37]Emilia Siviero, Emilie Chautru, Stéphan Clémençon:
A Statistical Learning View of Simple Kriging. CoRR abs/2202.07365 (2022) - [i36]Laurence Likforman-Sulem, Anna Esposito, Marcos Faúndez-Zanuy, Stéphan Clémençon, Gennaro Cordasco:
EMOTHAW: A novel database for emotional state recognition from handwriting. CoRR abs/2202.12245 (2022) - [i35]Jean-Rémy Conti, Nathan Noiry, Vincent Despiegel, Stéphane Gentric, Stéphan Clémençon:
Mitigating Gender Bias in Face Recognition Using the von Mises-Fisher Mixture Model. CoRR abs/2210.13664 (2022) - [i34]Pierre Laforgue, Stéphan Clémençon, Patrice Bertail:
On Medians of (Randomized) Pairwise Means. CoRR abs/2211.00603 (2022) - [i33]Jean-Rémy Conti, Stéphan Clémençon:
Assessing Performance and Fairness Metrics in Face Recognition - Bootstrap Methods. CoRR abs/2211.07245 (2022) - 2021
- [c74]Guillaume Ausset, Stéphan Clémençon, François Portier:
Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic Bounds and Applications. AISTATS 2021: 532-540 - [c73]Robin Vogel, Aurélien Bellet, Stéphan Clémençon:
Learning Fair Scoring Functions: Bipartite Ranking under ROC-based Fairness Constraints. AISTATS 2021: 784-792 - [c72]Guillaume Ausset, Tom Ciffreo, François Portier, Stéphan Clémençon, Timothée Papin:
Individual Survival Curves with Conditional Normalizing Flows. DSAA 2021: 1-10 - [c71]Safa Boudabous, Stéphan Clémençon, Houda Labiod, Julian Garbiso:
Dynamic Graph Convolutional LSTM application for traffic flow estimation from error-prone measurements: results and transferability analysis. DSAA 2021: 1-10 - [c70]Safa Boudabous, Stéphan Clémençon, Houda Labiod, Julian Garbiso:
Dynamic Graph Convolutional LSTM application for traffic flow estimation from error-prone measurements: results and transferability analysis. DSAA 2021: 1-10 - [c69]Corentin Larroche, Johan Mazel, Stéphan Clémençon:
Anomalous Cluster Detection in Large Networks with Diffusion-Percolation Testing. ESANN 2021 - [c68]Patrice Bertail, Stéphan Clémençon, Yannick Guyonvarch, Nathan Noiry:
Learning from Biased Data: A Semi-Parametric Approach. ICML 2021: 803-812 - [c67]Pierre Laforgue, Guillaume Staerman, Stéphan Clémençon:
Generalization Bounds in the Presence of Outliers: a Median-of-Means Study. ICML 2021: 5937-5947 - [c66]Myrto Limnios, Nathan Noiry, Stéphan Clémençon:
Learning to Rank Anomalies: Scalar Performance Criteria and Maximization of Two-Sample Rank Statistics. LIDTA@ECML/PKDD 2021: 63-75 - [i32]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon, Florence d'Alché-Buc:
Depth-based pseudo-metrics between probability distributions. CoRR abs/2103.12711 (2021) - [i31]Corentin Larroche, Johan Mazel, Stéphan Clémençon:
Dynamically Modelling Heterogeneous Higher-Order Interactions for Malicious Behavior Detection in Event Logs. CoRR abs/2103.15708 (2021) - [i30]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon:
Affine-Invariant Integrated Rank-Weighted Depth: Definition, Properties and Finite Sample Analysis. CoRR abs/2106.11068 (2021) - [i29]Guillaume Ausset, Tom Ciffreo, François Portier, Stéphan Clémençon, Timothée Papin:
Individual Survival Curves with Conditional Normalizing Flows. CoRR abs/2107.12825 (2021) - [i28]Robin Vogel, Stéphan Clémençon, Pierre Laforgue:
Visual Recognition with Deep Learning from Biased Image Datasets. CoRR abs/2109.02357 (2021) - 2020
- [j18]Stéphan Clémençon, Patrice Bertail, Gabriela Ciolek:
Statistical learning based on Markovian data maximal deviation inequalities and learning rates. Ann. Math. Artif. Intell. 88(7): 735-757 (2020) - [j17]Maël Chiapino, Stéphan Clémençon, Vincent Feuillard, Anne Sabourin:
A multivariate extreme value theory approach to anomaly clustering and visualization. Comput. Stat. 35(2): 607-628 (2020) - [c65]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon:
The Area of the Convex Hull of Sampled Curves: a Robust Functional Statistical Depth measure. AISTATS 2020: 570-579 - [c64]Robin Vogel, Stéphan Clémençon:
A Multiclass Classification Approach to Label Ranking. AISTATS 2020: 1421-1430 - [c63]Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d'Alché-Buc, James Eagan, Winston Maxwell, Pavlo Mozharovskyi, Jayneel Parekh:
Identifying the "right" level of explanation in a given situation. NeHuAI@ECAI 2020: 63-66 - [c62]Robin Vogel, Mastane Achab, Stéphan Clémençon, Charles Tillier:
Weighted Emprirical Risk Minimization: Transfer Learning based on Importance Sampling. ESANN 2020: 515-520 - [c61]Naman Singh Negi, Ons Jelassi, Hakima Chaouchi, Stéphan Clémençon:
Distributed online Data Anomaly Detection for connected vehicles. ICAIIC 2020: 494-500 - [c60]Corentin Larroche, Johan Mazel, Stéphan Clémençon:
Percolation-Based Detection of Anomalous Subgraphs in Complex Networks. IDA 2020: 287-299 - [i27]Robin Vogel, Mastane Achab, Stéphan Clémençon, Charles Tillier:
Weighted Empirical Risk Minimization: Sample Selection Bias Correction based on Importance Sampling. CoRR abs/2002.05145 (2020) - [i26]Robin Vogel, Aurélien Bellet, Stéphan Clémençon:
Learning Fair Scoring Functions: Fairness Definitions, Algorithms and Generalization Bounds for Bipartite Ranking. CoRR abs/2002.08159 (2020) - [i25]Stéphan Clémençon, Robin Vogel:
A Multiclass Classification Approach to Label Ranking. CoRR abs/2002.09420 (2020) - [i24]Valérie Beaudouin, Isabelle Bloch, David Bounie, Stéphan Clémençon, Florence d'Alché-Buc, James Eagan, Winston Maxwell, Pavlo Mozharovskyi, Jayneel Parekh:
Flexible and Context-Specific AI Explainability: A Multidisciplinary Approach. CoRR abs/2003.07703 (2020) - [i23]Pierre Laforgue, Guillaume Staerman, Stéphan Clémençon:
How Robust is the Median-of-Means? Concentration Bounds in Presence of Outliers. CoRR abs/2006.05240 (2020) - [i22]Guillaume Ausset, Stéphan Clémençon, François Portier:
Nearest Neighbour Based Estimates of Gradients: Sharp Nonasymptotic Bounds and Applications. CoRR abs/2006.15043 (2020)
2010 – 2019
- 2019
- [c59]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon, Florence d'Alché-Buc:
Functional Isolation Forest. ACML 2019: 332-347 - [c58]Pierre Laforgue, Stéphan Clémençon, Florence d'Alché-Buc:
Autoencoding any Data through Kernel Autoencoders. AISTATS 2019: 1061-1069 - [c57]Mastane Achab, Anna Korba, Stéphan Clémençon:
Dimensionality Reduction and (Bucket) Ranking: a Mass Transportation Approach. ALT 2019: 64-93 - [c56]Stéphan Clémençon, Pierre Laforgue, Patrice Bertail:
On Medians of (Randomized) Pairwise Means. ICML 2019: 1272-1281 - [c55]Stéphan Clémençon, Robin Vogel:
On Tree-Based Methods for Similarity Learning. LOD 2019: 676-688 - [c54]Robin Vogel, Aurélien Bellet, Stéphan Clémençon, Ons Jelassi, Guillaume Papa:
Trade-Offs in Large-Scale Distributed Tuplewise Estimation And Learning. ECML/PKDD (2) 2019: 229-245 - [c53]Naman Singh Negi, Ons Jelassi, Stéphan Clémençon, Sebastian Fischmeister:
A LSTM Approach to Detection of Autonomous Vehicle Hijacking. VEHITS 2019: 475-482 - [c52]Safa Boudabous, Julian Garbiso, Bertrand Leroy, Stéphan Clémençon, Houda Labiod:
Traffic Analysis Based on Bluetooth Passive Scanning. VTC Spring 2019: 1-6 - [i21]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon, Florence d'Alché-Buc:
Functional Isolation Forest. CoRR abs/1904.04573 (2019) - [i20]Guillaume Ausset, Stéphan Clémençon, François Portier:
Empirical Risk Minimization under Random Censorship: Theory and Practice. CoRR abs/1906.01908 (2019) - [i19]Robin Vogel, Aurélien Bellet, Stéphan Clémençon, Ons Jelassi, Guillaume Papa:
Trade-offs in Large-Scale Distributed Tuplewise Estimation and Learning. CoRR abs/1906.09234 (2019) - [i18]Stéphan Clémençon, Robin Vogel:
On Tree-based Methods for Similarity Learning. CoRR abs/1906.09243 (2019) - [i17]Pierre Laforgue, Stéphan Clémençon:
Statistical Learning from Biased Training Samples. CoRR abs/1906.12304 (2019) - [i16]Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon:
The Area of the Convex Hull of Sampled Curves: a Robust Functional Statistical Depth Measure. CoRR abs/1910.04085 (2019) - 2018
- [c51]Mastane Achab, Stéphan Clémençon, Aurélien Garivier:
Profitable Bandits. ACML 2018: 694-709 - [c50]Stéphan Clémençon, François Portier:
Beating Monte Carlo Integration: a Nonasymptotic Study of Kernel Smoothing Methods. AISTATS 2018: 548-556 - [c49]Stéphan Clémençon, Anna Korba, Eric Sibony:
Ranking Median Regression: Learning to Order through Local Consensus. ALT 2018: 212-245 - [c48]Stéphan Clémençon, Anna Korba:
On aggregation in ranking median regression. ESANN 2018 - [c47]Robin Vogel, Aurélien Bellet, Stéphan Clémençon:
A Probabilistic Theory of Supervised Similarity Learning for Pointwise ROC Curve Optimization. ICML 2018: 5062-5071 - [c46]Patrice Bertail, Gabriela Ciolek, Stéphan Clémençon:
Generalization Bounds for Minimum Volume Set Estimation based on Markovian Data. ISAIM 2018 - [c45]Hamid Jalalzai, Stéphan Clémençon, Anne Sabourin:
On Binary Classification in Extreme Regions. NeurIPS 2018: 3096-3104 - [i15]Mastane Achab, Stéphan Clémençon, Aurélien Garivier:
Profitable Bandits. CoRR abs/1805.02908 (2018) - [i14]Pierre Laforgue, Stéphan Clémençon, Florence d'Alché-Buc:
Autoencoding any Data through Kernel Autoencoders. CoRR abs/1805.11028 (2018) - [i13]Robin Vogel, Aurélien Bellet, Stéphan Clémençon:
A Probabilistic Theory of Supervised Similarity Learning for Pointwise ROC Curve Optimization. CoRR abs/1807.06981 (2018) - [i12]Mastane Achab, Anna Korba, Stéphan Clémençon:
Dimensionality Reduction and (Bucket) Ranking: a Mass Transportation Approach. CoRR abs/1810.06291 (2018) - 2017
- [j16]Nicolas Goix, Anne Sabourin, Stéphan Clémençon:
Sparse representation of multivariate extremes with applications to anomaly detection. J. Multivar. Anal. 161: 12-31 (2017) - [j15]Laurence Likforman-Sulem, Anna Esposito, Marcos Faúndez-Zanuy, Stéphan Clémençon, Gennaro Cordasco:
EMOTHAW: A Novel Database for Emotional State Recognition From Handwriting and Drawing. IEEE Trans. Hum. Mach. Syst. 47(2): 273-284 (2017) - [c44]Anna Korba, Stéphan Clémençon, Eric Sibony:
A Learning Theory of Ranking Aggregation. AISTATS 2017: 1001-1010 - [c43]Albert Thomas, Stéphan Clémençon, Alexandre Gramfort, Anne Sabourin:
Anomaly Detection in Extreme Regions via Empirical MV-sets on the Sphere. AISTATS 2017: 1011-1019 - [c42]Stéphan Clémençon, Mastane Achab:
Ranking Data with Continuous Labels through Oriented Recursive Partitions. NIPS 2017: 4600-4608 - [c41]Mastane Achab, Stéphan Clémençon, Aurélien Garivier, Anne Sabourin, Claire Vernade:
Max K-Armed Bandit: On the ExtremeHunter Algorithm and Beyond. ECML/PKDD (2) 2017: 389-404 - [i11]Mastane Achab, Stéphan Clémençon, Aurélien Garivier, Anne Sabourin, Claire Vernade:
Max K-armed bandit: On the ExtremeHunter algorithm and beyond. CoRR abs/1707.08820 (2017) - 2016
- [j14]Stéphan Clémençon, Igor Colin, Aurélien Bellet:
Scaling-up Empirical Risk Minimization: Optimization of Incomplete $U$-statistics. J. Mach. Learn. Res. 17: 76:1-76:36 (2016) - [j13]Charanpal Dhanjal, Nicolas Baskiotis, Stéphan Clémençon, Nicolas Usunier:
An empirical comparison of V-fold penalisation and cross-validation for model selection in distribution-free regression. Pattern Anal. Appl. 19(1): 41-53 (2016) - [c40]Stéphan Clémençon, Patrice Bertail, Guillaume Papa:
Learning from Survey Training Samples: Rate Bounds for Horvitz-Thompson Risk Minimizers. ACML 2016: 142-157 - [c39]Nicolas Goix, Anne Sabourin, Stéphan Clémençon:
Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking. AISTATS 2016: 75-83 - [c38]Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon:
Gossip Dual Averaging for Decentralized Optimization of Pairwise Functions. ICML 2016: 1388-1396 - [c37]Guillaume Papa, Aurélien Bellet, Stéphan Clémençon:
On Graph Reconstruction via Empirical Risk Minimization: Fast Learning Rates and Scalability. NIPS 2016: 694-702 - [i10]Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon:
Gossip Dual Averaging for Decentralized Optimization of Pairwise Functions. CoRR abs/1606.02421 (2016) - 2015
- [j12]Stéphan Clémençon, Héctor de Arazoza, Fabrice Rossi, Viet-Chi Tran:
A statistical network analysis of the HIV/AIDS epidemics in Cuba. Soc. Netw. Anal. Min. 5(1): 58:1-58:14 (2015) - [c36]Charanpal Dhanjal, Romaric Gaudel, Stéphan Clémençon:
Collaborative Filtering with Localised Ranking. AAAI 2015: 2554-2560 - [c35]Nicolas Goix, Anne Sabourin, Stéphan Clémençon:
On Anomaly Ranking and Excess-Mass Curves. AISTATS 2015 - [c34]Guillaume Papa, Pascal Bianchi, Stéphan Clémençon:
Adaptive Sampling for Incremental Optimization Using Stochastic Gradient Descent. ALT 2015: 317-331 - [c33]Nicolas Goix, Anne Sabourin, Stéphan Clémençon:
Learning the dependence structure of rare events: a non-asymptotic study. COLT 2015: 843-860 - [c32]Stéphan Clémençon, Sylvain Robbiano:
An Ensemble Learning Technique for Multipartite Ranking. ESANN 2015 - [c31]Eric Sibony, Stéphan Clémençon, Jérémie Jakubowicz:
MRA-based Statistical Learning from Incomplete Rankings. ICML 2015: 1432-1441 - [c30]Stéphan Clémençon, Aurélien Bellet, Ons Jelassi, Guillaume Papa:
Scalability of Stochastic Gradient Descent based on "Smart" Sampling Techniques. INNS Conference on Big Data 2015: 308-315 - [c29]Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon:
Extending Gossip Algorithms to Distributed Estimation of U-statistics. NIPS 2015: 271-279 - [c28]Guillaume Papa, Stéphan Clémençon, Aurélien Bellet:
SGD Algorithms based on Incomplete U-statistics: Large-Scale Minimization of Empirical Risk. NIPS 2015: 1027-1035 - [p1]Laurence Likforman-Sulem, Anna Esposito, Marcos Faúndez-Zanuy, Stéphan Clémençon:
Extracting Style and Emotion from Handwriting. Advances in Neural Networks 2015: 347-355 - [i9]Stéphan Clémençon, Aurélien Bellet, Igor Colin:
Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics. CoRR abs/1501.02629 (2015) - [i8]Charanpal Dhanjal, Romaric Gaudel, Stéphan Clémençon:
AUC Optimisation and Collaborative Filtering. CoRR abs/1508.06091 (2015) - [i7]Igor Colin, Aurélien Bellet, Joseph Salmon, Stéphan Clémençon:
Extending Gossip Algorithms to Distributed Estimation of U-Statistics. CoRR abs/1511.05464 (2015) - 2014
- [j11]Charanpal Dhanjal, Romaric Gaudel, Stéphan Clémençon:
Efficient eigen-updating for spectral graph clustering. Neurocomputing 131: 440-452 (2014) - [j10]Stéphan Clémençon:
A statistical view of clustering performance through the theory of U-processes. J. Multivar. Anal. 124: 42-56 (2014) - [j9]Stéphan Clémençon, Sylvain Robbiano:
Building confidence regions for the ROC surface. Pattern Recognit. Lett. 46: 67-74 (2014) - [c27]Stéphan Clémençon, Patrice Bertail, Emilie Chautru:
Scaling up M-estimation via sampling designs: The Horvitz-Thompson stochastic gradient descent. IEEE BigData 2014: 25-30 - [c26]Eric Sibony, Stéphan Clémençon, Jérémie Jakubowicz:
Multiresolution analysis of incomplete rankings with applications to prediction. IEEE BigData 2014: 88-95 - [c25]Stéphan Clémençon, Sylvain Robbiano:
Anomaly Ranking as Supervised Bipartite Ranking. ICML 2014: 343-351 - [c24]Charanpal Dhanjal, Stéphan Clémençon:
Learning reputation in an authorship network. SAC 2014: 1724-1726 - [c23]Charanpal Dhanjal, Romaric Gaudel, Stéphan Clémençon:
Online Matrix Completion Through Nuclear Norm Regularisation. SDM 2014: 623-631 - [i6]Stéphan Clémençon, Héctor de Arazoza, Fabrice Rossi, Viet-Chi Tran:
A statistical network analysis of the HIV/AIDS epidemics in Cuba. CoRR abs/1401.6449 (2014) - 2013
- [j8]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
Ranking forests. J. Mach. Learn. Res. 14(1): 39-73 (2013) - [j7]Stéphan Clémençon, Sylvain Robbiano, Nicolas Vayatis:
Ranking data with ordinal labels: optimality and pairwise aggregation. Mach. Learn. 91(1): 67-104 (2013) - [j6]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
An empirical comparison of learning algorithms for nonparametric scoring: the TreeRank algorithm and other methods. Pattern Anal. Appl. 16(4): 475-496 (2013) - [c22]Stéphan Clémençon, Jérémie Jakubowicz:
Scoring anomalies: a M-estimation formulation. AISTATS 2013: 659-667 - [c21]Pascal Bianchi, Stéphan Clémençon, Gemma Morral, Jérémie Jakubowicz:
On-line learning gossip algorithm in multi-agent systems with local decision rules. IEEE BigData 2013: 6-14 - [c20]Stéphan Clémençon, Sylvain Robbiano, Jessica Tressou:
Maximal Deviations of Incomplete U-statistics with Applications to Empirical Risk Sampling. SDM 2013: 19-27 - [i5]Charanpal Dhanjal, Stéphan Clémençon:
Learning Reputation in an Authorship Network. CoRR abs/1311.6334 (2013) - 2012
- [i4]Stéphan Clémençon, Héctor de Arazoza, Fabrice Rossi, Viet-Chi Tran:
Hierarchical clustering for graph visualization. CoRR abs/1210.5693 (2012) - [i3]Stéphan Clémençon, Héctor de Arazoza, Fabrice Rossi, Viet-Chi Tran:
Visual Mining of Epidemic Networks. CoRR abs/1210.5694 (2012) - [i2]Charanpal Dhanjal, Sandrine Blanchemanche, Stéphan Clémençon, Ákos Róna-Tas, Fabrice Rossi:
Dissemination of Health Information within Social Networks. CoRR abs/1211.4235 (2012) - 2011
- [j5]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
Adaptive partitioning schemes for bipartite ranking - How to grow and prune a ranking tree. Mach. Learn. 83(1): 31-69 (2011) - [j4]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
Avancées récentes dans le domaine de l'apprentissage d'ordonnancements. Rev. d'Intelligence Artif. 25(3): 345-368 (2011) - [c19]Stéphan Clémençon, Héctor de Arazoza, Fabrice Rossi, Viet-Chi Tran:
Hierarchical clustering for graph visualization. ESANN 2011 - [c18]Sylvain Robbiano, Stéphan Clémençon:
Minimax Learning Rates for Bipartite Ranking and Plug-in Rules. ICML 2011: 441-448 - [c17]Till Wohlfarth, Stéphan Clémençon, François Roueff, Xavier Casellato:
A Data-Mining Approach to Travel Price Forecasting. ICMLA (1) 2011: 84-89 - [c16]Stéphan Clémençon, Héctor de Arazoza, Fabrice Rossi, Viet-Chi Tran:
Visual Mining of Epidemic Networks. IWANN (2) 2011: 276-283 - [c15]Stéphan Clémençon:
On U-processes and clustering performance. NIPS 2011: 37-45 - [c14]Stéphan Clémençon, Romaric Gaudel, Jérémie Jakubowicz:
Clustering Rankings in the Fourier Domain. ECML/PKDD (1) 2011: 343-358 - [c13]Charanpal Dhanjal, Stéphan Clémençon:
Maximising the Quality of Influence. SDM 2011: 956-967 - [i1]Charanpal Dhanjal, Stéphan Clémençon, Héctor de Arazoza, Fabrice Rossi, Viet-Chi Tran:
The Evolution of the Cuban HIV/AIDS Network. CoRR abs/1109.2499 (2011) - 2010
- [c12]Stéphan Clémençon, Jérémie Jakubowicz:
Kantorovich Distances between Rankings with Applications to Rank Aggregation. ECML/PKDD (1) 2010: 248-263
2000 – 2009
- 2009
- [j3]Stéphan Clémençon, Nicolas Vayatis:
Tree-based ranking methods. IEEE Trans. Inf. Theory 55(9): 4316-4336 (2009) - [c11]Stéphan Clémençon, Nicolas Vayatis:
Adaptive Estimation of the Optimal ROC Curve and a Bipartite Ranking Algorithm. ALT 2009: 216-231 - [c10]Stéphan Clémençon, Nicolas Vayatis:
Nonparametric estimation of the precision-recall curve. ICML 2009: 185-192 - [c9]Stéphan Clémençon, Marine Depecker, Nicolas Vayatis:
Bagging Ranking Trees. ICMLA 2009: 658-663 - [c8]Stéphan Clémençon, Nicolas Vayatis, Marine Depecker:
AUC optimization and the two-sample problem. NIPS 2009: 360-368 - [c7]Stéphan Clémençon, Nicolas Vayatis:
On Partitioning Rules for Bipartite Ranking. AISTATS 2009: 97-104 - 2008
- [j2]Patrice Bertail, Stéphan Clémençon:
Approximate regenerative-block bootstrap for Markov chains. Comput. Stat. Data Anal. 52(5): 2739-2756 (2008) - [c6]Stéphan Clémençon, Nicolas Vayatis:
Approximation of the Optimal ROC Curve and a Tree-Based Ranking Algorithm. ALT 2008: 22-37 - [c5]Patrice Bertail, Stéphan Clémençon, Nicolas Vayatis:
On Bootstrapping the ROC Curve. NIPS 2008: 137-144 - [c4]Stéphan Clémençon, Nicolas Vayatis:
Empirical performance maximization for linear rank statistics. NIPS 2008: 305-312 - [c3]Stéphan Clémençon, Nicolas Vayatis:
Overlaying classifiers: a practical approach for optimal ranking. NIPS 2008: 313-320 - 2007
- [j1]Stéphan Clémençon, Nicolas Vayatis:
Ranking the Best Instances. J. Mach. Learn. Res. 8: 2671-2699 (2007) - 2005
- [c2]Stéphan Clémençon, Gábor Lugosi, Nicolas Vayatis:
Ranking and Scoring Using Empirical Risk Minimization. COLT 2005: 1-15 - [c1]Stéphan Clémençon, Gábor Lugosi, Nicolas Vayatis:
From Ranking to Classification: A Statistical View. GfKl 2005: 214-221
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-27 00:44 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint