default search action
Truyen Tran 0001
Person information
- affiliation: Deakin University, Center for Pattern Recognition and Data Analyticss (PRaDA), Geelong, Australia
- affiliation (PhD 2008): Curtin University of Technology, Department of Computing, Perth, Australia
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j32]Romero F. A. B. de Morais, Truyen Tran, Caroline Alexander, Natasha Amery, Catherine Morgan, Alicia J. Spittle, Vuong Le, Nadia Badawi, Alison Salt, Jane Valentine, Catherine Elliott, Elizabeth M. Hurrion, Paul A Dawson, Svetha Venkatesh:
Fine-Grained Fidgety Movement Classification Using Active Learning. IEEE J. Biomed. Health Informatics 29(1): 596-607 (2025) - 2024
- [j31]Binh Nguyen-Thai, Vuong Le, Ngoc-Dung T. Tieu, Truyen Tran, Svetha Venkatesh, Naeem Ramzan:
Learning evolving relations for multivariate time series forecasting. Appl. Intell. 54(5): 3918-3932 (2024) - [j30]Nhung Nghiem, Nick Wilson, Jeremy Krebs, Truyen Tran:
Predicting the risk of diabetes complications using machine learning and social administrative data in a country with ethnic inequities in health: Aotearoa New Zealand. BMC Medical Informatics Decis. Mak. 24(1): 274 (2024) - [c94]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Thin Nguyen, Svetha Venkatesh:
Root Cause Explanation of Outliers under Noisy Mechanisms. AAAI 2024: 20508-20515 - [c93]Kien Do, Dung Nguyen, Hung Le, Thao Le, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Revisiting the Dataset Bias Problem from a Statistical Perspective. ECAI 2024: 3120-3127 - [c92]Dung Nguyen, Hung Le, Kien Do, Sunil Gupta, Svetha Venkatesh, Truyen Tran:
Diversifying Training Pool Predictability for Zero-shot Coordination: A Theory of Mind Approach. IJCAI 2024: 166-174 - [i108]Kien Do, Dung Nguyen, Hung Le, Thao Le, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Revisiting the Dataset Bias Problem from a Statistical Perspective. CoRR abs/2402.03577 (2024) - [i107]Hung Le, Dung Nguyen, Kien Do, Svetha Venkatesh, Truyen Tran:
Enhancing Length Extrapolation in Sequential Models with Pointer-Augmented Neural Memory. CoRR abs/2404.11870 (2024) - [i106]Giang Do, Hung Le, Truyen Tran:
SimSMoE: Solving Representational Collapse via Similarity Measure. CoRR abs/2406.15883 (2024) - [i105]Long Hoang Dang, Thao Minh Le, Vuong Le, Tu Minh Phuong, Truyen Tran:
SADL: An Effective In-Context Learning Method for Compositional Visual QA. CoRR abs/2407.01983 (2024) - [i104]Chayan Banerjee, Kien Nguyen Thanh, Olivier Salvado, Truyen Tran, Clinton Fookes:
PINNs for Medical Image Analysis: A Survey. CoRR abs/2408.01026 (2024) - [i103]Tuyen Tran, Thao Minh Le, Hung Tran, Truyen Tran:
Unified Framework with Consistency across Modalities for Human Activity Recognition. CoRR abs/2409.02385 (2024) - [i102]Tri Minh Nguyen, Sherif Abdulkader Tawfik, Truyen Tran, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks. CoRR abs/2411.04323 (2024) - [i101]Thang Nguyen, Dung Nguyen, Kha Pham, Truyen Tran:
MP-PINN: A Multi-Phase Physics-Informed Neural Network for Epidemic Forecasting. CoRR abs/2411.06781 (2024) - [i100]Giang Do, Kha Pham, Hung Le, Truyen Tran:
On the effectiveness of discrete representations in sparse mixture of experts. CoRR abs/2411.19402 (2024) - [i99]Quang-Hung Le, Long Hoang Dang, Ngan Le, Truyen Tran, Thao Minh Le:
Progressive Multi-granular Alignments for Grounded Reasoning in Large Vision-Language Models. CoRR abs/2412.08125 (2024) - [i98]Minh Khoa Le, Kien Do, Truyen Tran:
Learning Structural Causal Models from Ordering: Identifiable Flow Models. CoRR abs/2412.09843 (2024) - 2023
- [j29]Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Balanced Q-learning: Combining the influence of optimistic and pessimistic targets. Artif. Intell. 325: 104021 (2023) - [j28]Tri Minh Nguyen, Thin Nguyen, Truyen Tran:
Learning to discover medicines. Int. J. Data Sci. Anal. 16(3): 301-316 (2023) - [j27]Tri Minh Nguyen, Thomas P. Quinn, Thin Nguyen, Truyen Tran:
Explaining Black Box Drug Target Prediction Through Model Agnostic Counterfactual Samples. IEEE ACM Trans. Comput. Biol. Bioinform. 20(2): 1020-1029 (2023) - [j26]Romero F. A. B. de Morais, Vuong Le, Catherine Morgan, Alicia J. Spittle, Nadia Badawi, Jane Valentine, Elizabeth M. Hurrion, Paul A Dawson, Truyen Tran, Svetha Venkatesh:
Robust and Interpretable General Movement Assessment Using Fidgety Movement Detection. IEEE J. Biomed. Health Informatics 27(10): 5042-5053 (2023) - [c91]Dung Nguyen, Phuoc Nguyen, Hung Le, Kien Do, Svetha Venkatesh, Truyen Tran:
Memory-Augmented Theory of Mind Network. AAAI 2023: 11630-11637 - [c90]Hung Tran, Vuong Le, Svetha Venkatesh, Truyen Tran:
Persistent-Transient Duality: A Multi-mechanism Approach for Modeling Human-Object Interaction. ICCV 2023: 9824-9833 - [c89]Kha Pham, Hung Le, Man Ngo, Truyen Tran:
Improving Out-of-distribution Generalization with Indirection Representations. ICLR 2023 - [c88]Dung Nguyen, Hung Le, Kien Do, Svetha Venkatesh, Truyen Tran:
Social Motivation for Modelling Other Agents under Partial Observability in Decentralised Training. IJCAI 2023: 4082-4090 - [c87]John C. Grundy, Anuradha Madugalla, Jennifer McIntosh, Truyen Tran:
Vision: Requirements Engineering for Software Development in Aged Care. REW 2023: 440-445 - [c86]Thao Minh Le, Vuong Le, Sunil Gupta, Svetha Venkatesh, Truyen Tran:
Guiding Visual Question Answering with Attention Priors. WACV 2023: 4370-4379 - [i97]Dung Nguyen, Phuoc Nguyen, Hung Le, Kien Do, Svetha Venkatesh, Truyen Tran:
Memory-Augmented Theory of Mind Network. CoRR abs/2301.06926 (2023) - [i96]Hung Tran, Vuong Le, Svetha Venkatesh, Truyen Tran:
Persistent-Transient Duality: A Multi-mechanism Approach for Modeling Human-Object Interaction. CoRR abs/2307.12729 (2023) - [i95]Thommen George Karimpanal, Buddhika Laknath Semage, Santu Rana, Hung Le, Truyen Tran, Sunil Gupta, Svetha Venkatesh:
LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient Querying. CoRR abs/2308.13542 (2023) - [i94]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Thin Nguyen, Svetha Venkatesh:
Root Cause Explanation of Outliers under Noisy Mechanisms. CoRR abs/2312.11818 (2023) - 2022
- [j25]Tri Minh Nguyen, Thin Nguyen, Truyen Tran:
Mitigating cold-start problems in drug-target affinity prediction with interaction knowledge transferring. Briefings Bioinform. 23(4) (2022) - [j24]Tri Minh Nguyen, Thin Nguyen, Thao Minh Le, Truyen Tran:
GEFA: Early Fusion Approach in Drug-Target Affinity Prediction. IEEE ACM Trans. Comput. Biol. Bioinform. 19(2): 718-728 (2022) - [c85]Dung Nguyen, Phuoc Nguyen, Hung Le, Kien Do, Svetha Venkatesh, Truyen Tran:
Learning Theory of Mind via Dynamic Traits Attribution. AAMAS 2022: 954-962 - [c84]Dung Nguyen, Phuoc Nguyen, Svetha Venkatesh, Truyen Tran:
Learning to Transfer Role Assignment Across Team Sizes. AAMAS 2022: 963-971 - [c83]Hung Tran, Vuong Le, Svetha Venkatesh, Truyen Tran:
Persistent-Transient Duality in Human Behavior Modeling. CVPR Workshops 2022: 2527-2530 - [c82]Kien Do, Haripriya Harikumar, Hung Le, Dung Nguyen, Truyen Tran, Santu Rana, Dang Nguyen, Willy Susilo, Svetha Venkatesh:
Towards Effective and Robust Neural Trojan Defenses via Input Filtering. ECCV (5) 2022: 283-300 - [c81]Hoang-Anh Pham, Thao Minh Le, Vuong Le, Tu Minh Phuong, Truyen Tran:
Video Dialog as Conversation About Objects Living in Space-Time. ECCV (39) 2022: 710-726 - [c80]Kha Pham, Hung Le, Man Ngo, Truyen Tran, Bao Ho, Svetha Venkatesh:
Generative Pseudo-Inverse Memory. ICLR 2022 - [c79]Kien Do, Hung Le, Dung Nguyen, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation. NeurIPS 2022 - [c78]Kha Pham, Hung Le, Man Ngo, Truyen Tran:
Functional Indirection Neural Estimator for Better Out-of-distribution Generalization. NeurIPS 2022 - [i93]Tri Minh Nguyen, Thin Nguyen, Truyen Tran:
Mitigating cold start problems in drug-target affinity prediction with interaction knowledge transferring. CoRR abs/2202.01195 (2022) - [i92]Tri Minh Nguyen, Thin Nguyen, Truyen Tran:
Learning to Discover Medicines. CoRR abs/2202.07096 (2022) - [i91]Kien Do, Haripriya Harikumar, Hung Le, Dung Nguyen, Truyen Tran, Santu Rana, Dang Nguyen, Willy Susilo, Svetha Venkatesh:
Towards Effective and Robust Neural Trojan Defenses via Input Filtering. CoRR abs/2202.12154 (2022) - [i90]Dung Nguyen, Phuoc Nguyen, Hung Le, Kien Do, Svetha Venkatesh, Truyen Tran:
Learning Theory of Mind via Dynamic Traits Attribution. CoRR abs/2204.09047 (2022) - [i89]Hung Tran, Vuong Le, Svetha Venkatesh, Truyen Tran:
Persistent-Transient Duality in Human Behavior Modeling. CoRR abs/2204.09875 (2022) - [i88]Dung Nguyen, Phuoc Nguyen, Svetha Venkatesh, Truyen Tran:
Learning to Transfer Role Assignment Across Team Sizes. CoRR abs/2204.12937 (2022) - [i87]Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon Ryan, Svetha Venkatesh:
Fast Conditional Network Compression Using Bayesian HyperNetworks. CoRR abs/2205.06404 (2022) - [i86]Thao Minh Le, Vuong Le, Sunil Gupta, Svetha Venkatesh, Truyen Tran:
Guiding Visual Question Answering with Attention Priors. CoRR abs/2205.12616 (2022) - [i85]Hoang-Anh Pham, Thao Minh Le, Vuong Le, Tu Minh Phuong, Truyen Tran:
Video Dialog as Conversation about Objects Living in Space-Time. CoRR abs/2207.03656 (2022) - [i84]Kien Do, Hung Le, Dung Nguyen, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu Rana, Svetha Venkatesh:
Momentum Adversarial Distillation: Handling Large Distribution Shifts in Data-Free Knowledge Distillation. CoRR abs/2209.10359 (2022) - [i83]Kha Pham, Hung Le, Man Ngo, Truyen Tran:
Functional Indirection Neural Estimator for Better Out-of-distribution Generalization. CoRR abs/2210.12739 (2022) - 2021
- [j23]Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Chaiyong Ragkhitwetsagul, Aditya Ghose:
Automatically recommending components for issue reports using deep learning. Empir. Softw. Eng. 26(1): 14 (2021) - [j22]Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran:
Hierarchical Conditional Relation Networks for Multimodal Video Question Answering. Int. J. Comput. Vis. 129(11): 3027-3050 (2021) - [j21]Thin Nguyen, Samuel C. Lee, Thomas P. Quinn, Buu Minh Thanh Truong, Xiaomei Li, Truyen Tran, Svetha Venkatesh, Thuc Duy Le:
PAN: Personalized Annotation-Based Networks for the Prediction of Breast Cancer Relapse. IEEE ACM Trans. Comput. Biol. Bioinform. 18(6): 2841-2847 (2021) - [j20]Binh Nguyen-Thai, Vuong Le, Catherine Morgan, Nadia Badawi, Truyen Tran, Svetha Venkatesh:
A Spatio-Temporal Attention-Based Model for Infant Movement Assessment From Videos. IEEE J. Biomed. Health Informatics 25(10): 3911-3920 (2021) - [j19]Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, Aditya Ghose:
Automatic Feature Learning for Predicting Vulnerable Software Components. IEEE Trans. Software Eng. 47(1): 67-85 (2021) - [c77]Kien Do, Truyen Tran, Svetha Venkatesh:
Semi-Supervised Learning with Variational Bayesian Inference and Maximum Uncertainty Regularization. AAAI 2021: 7236-7244 - [c76]Romero F. A. B. de Morais, Vuong Le, Svetha Venkatesh, Truyen Tran:
Learning Asynchronous and Sparse Human-Object Interaction in Videos. CVPR 2021: 16041-16050 - [c75]Kien Do, Truyen Tran, Svetha Venkatesh:
Clustering by Maximizing Mutual Information Across Views. ICCV 2021: 9908-9918 - [c74]Asjad Khan, Hung Le, Kien Do, Truyen Tran, Aditya Ghose, Hoa Khanh Dam, Renuka Sindhgatta:
DeepProcess: Supporting Business Process Execution Using a MANN-Based Recommender System. ICSOC 2021: 19-33 - [c73]Long Hoang Dang, Thao Minh Le, Vuong Le, Truyen Tran:
Hierarchical Object-oriented Spatio-Temporal Reasoning for Video Question Answering. IJCAI 2021: 636-642 - [c72]Long Hoang Dang, Thao Minh Le, Vuong Le, Truyen Tran:
Object-Centric Representation Learning for Video Question Answering. IJCNN 2021: 1-8 - [c71]Truyen Tran, Vuong Le, Hung Le, Thao Minh Le:
From Deep Learning to Deep Reasoning. KDD 2021: 4076-4077 - [c70]Hung Le, Thommen George Karimpanal, Majid Abdolshah, Truyen Tran, Svetha Venkatesh:
Model-Based Episodic Memory Induces Dynamic Hybrid Controls. NeurIPS 2021: 30313-30325 - [c69]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, Svetha Venkatesh:
Variational Hyper-encoding Networks. ECML/PKDD (2) 2021: 100-115 - [c68]Dang Nguyen, Sunil Gupta, Trong Nguyen, Santu Rana, Phuoc Nguyen, Truyen Tran, Ky Le, Shannon Ryan, Svetha Venkatesh:
Knowledge Distillation with Distribution Mismatch. ECML/PKDD (2) 2021: 250-265 - [c67]Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon Ryan, Svetha Venkatesh:
Fast Conditional Network Compression Using Bayesian HyperNetworks. ECML/PKDD (3) 2021: 330-345 - [c66]Hung Tran, Vuong Le, Truyen Tran:
Goal-driven Long-Term Trajectory Prediction. WACV 2021: 796-805 - [i82]Romero F. A. B. de Morais, Vuong Le, Svetha Venkatesh, Truyen Tran:
Learning Asynchronous and Sparse Human-Object Interaction in Videos. CoRR abs/2103.02758 (2021) - [i81]Tri Minh Nguyen, Thomas P. Quinn, Thin Nguyen, Truyen Tran:
Counterfactual Explanation with Multi-Agent Reinforcement Learning for Drug Target Prediction. CoRR abs/2103.12983 (2021) - [i80]Long Hoang Dang, Thao Minh Le, Vuong Le, Truyen Tran:
Object-Centric Representation Learning for Video Question Answering. CoRR abs/2104.05166 (2021) - [i79]Binh Nguyen-Thai, Vuong Le, Catherine Morgan, Nadia Badawi, Truyen Tran, Svetha Venkatesh:
A Spatio-temporal Attention-based Model for Infant Movement Assessment from Videos. CoRR abs/2105.09783 (2021) - [i78]Long Hoang Dang, Thao Minh Le, Vuong Le, Truyen Tran:
Hierarchical Object-oriented Spatio-Temporal Reasoning for Video Question Answering. CoRR abs/2106.13432 (2021) - [i77]Kien Do, Truyen Tran, Svetha Venkatesh:
Clustering by Maximizing Mutual Information Across Views. CoRR abs/2107.11635 (2021) - [i76]Hung Le, Thommen George Karimpanal, Majid Abdolshah, Truyen Tran, Svetha Venkatesh:
Model-Based Episodic Memory Induces Dynamic Hybrid Controls. CoRR abs/2111.02104 (2021) - [i75]Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Balanced Q-learning: Combining the Influence of Optimistic and Pessimistic Targets. CoRR abs/2111.02787 (2021) - 2020
- [c65]Dung Nguyen, Svetha Venkatesh, Phuoc Nguyen, Truyen Tran:
Theory of Mind with Guilt Aversion Facilitates Cooperative Reinforcement Learning. ACML 2020: 33-48 - [c64]Romero F. A. B. de Morais, Vuong Le, Truyen Tran, Svetha Venkatesh:
Learning to Abstract and Predict Human Actions. BMVC 2020 - [c63]Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran:
Hierarchical Conditional Relation Networks for Video Question Answering. CVPR 2020: 9969-9978 - [c62]Kien Do, Truyen Tran:
Theory and Evaluation Metrics for Learning Disentangled Representations. ICLR 2020 - [c61]Hung Le, Truyen Tran, Svetha Venkatesh:
Neural Stored-program Memory. ICLR 2020 - [c60]Hung Le, Truyen Tran, Svetha Venkatesh:
Self-Attentive Associative Memory. ICML 2020: 5682-5691 - [c59]Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran:
Dynamic Language Binding in Relational Visual Reasoning. IJCAI 2020: 818-824 - [c58]Thommen George Karimpanal, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Learning Transferable Domain Priors for Safe Exploration in Reinforcement Learning. IJCNN 2020: 1-10 - [c57]Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran:
Neural Reasoning, Fast and Slow, for Video Question Answering. IJCNN 2020: 1-8 - [c56]Hoang Thanh-Tung, Truyen Tran:
Catastrophic forgetting and mode collapse in GANs. IJCNN 2020: 1-10 - [c55]Duc Nguyen, Phuoc Nguyen, Kien Do, Santu Rana, Sunil Gupta, Truyen Tran:
Unsupervised Anomaly Detection on Temporal Multiway Data. SSCI 2020: 1059-1066 - [i74]Hung Le, Truyen Tran, Svetha Venkatesh:
Self-Attentive Associative Memory. CoRR abs/2002.03519 (2020) - [i73]Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran:
Hierarchical Conditional Relation Networks for Video Question Answering. CoRR abs/2002.10698 (2020) - [i72]Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran:
Dynamic Language Binding in Relational Visual Reasoning. CoRR abs/2004.14603 (2020) - [i71]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, Svetha Venkatesh:
HyperVAE: A Minimum Description Length Variational Hyper-Encoding Network. CoRR abs/2005.08482 (2020) - [i70]Romero F. A. B. de Morais, Vuong Le, Truyen Tran, Svetha Venkatesh:
Learning to Abstract and Predict Human Actions. CoRR abs/2008.09234 (2020) - [i69]Dung Nguyen, Svetha Venkatesh, Phuoc Nguyen, Truyen Tran:
Theory of Mind with Guilt Aversion Facilitates Cooperative Reinforcement Learning. CoRR abs/2009.07445 (2020) - [i68]Duc Nguyen, Phuoc Nguyen, Kien Do, Santu Rana, Sunil Gupta, Truyen Tran:
Unsupervised Anomaly Detection on Temporal Multiway Data. CoRR abs/2009.09443 (2020) - [i67]Tri Minh Nguyen, Thin Nguyen, Thao Minh Le, Truyen Tran:
GEFA: Early Fusion Approach in Drug-Target Affinity Prediction. CoRR abs/2009.12146 (2020) - [i66]Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran:
Hierarchical Conditional Relation Networks for Multimodal Video Question Answering. CoRR abs/2010.10019 (2020) - [i65]Hoang Thanh-Tung, Truyen Tran:
Toward a Generalization Metric for Deep Generative Models. CoRR abs/2011.00754 (2020) - [i64]Hung Tran, Vuong Le, Truyen Tran:
Goal-driven Long-Term Trajectory Prediction. CoRR abs/2011.02751 (2020) - [i63]Anh-Cat Le-Ngo, Truyen Tran, Santu Rana, Sunil Gupta, Svetha Venkatesh:
Logically Consistent Loss for Visual Question Answering. CoRR abs/2011.10094 (2020) - [i62]Kien Do, Truyen Tran, Svetha Venkatesh:
Semi-Supervised Learning with Variational Bayesian Inference and Maximum Uncertainty Regularization. CoRR abs/2012.01793 (2020)
2010 – 2019
- 2019
- [j18]Kien Do, Truyen Tran, Thin Nguyen, Svetha Venkatesh:
Attentional multilabel learning over graphs: a message passing approach. Mach. Learn. 108(10): 1757-1781 (2019) - [j17]Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose, Tim Menzies:
A Deep Learning Model for Estimating Story Points. IEEE Trans. Software Eng. 45(7): 637-656 (2019) - [c54]Romero F. A. B. de Morais, Vuong Le, Truyen Tran, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh:
Learning Regularity in Skeleton Trajectories for Anomaly Detection in Videos. CVPR 2019: 11996-12004 - [c53]Hung Le, Truyen Tran, Svetha Venkatesh:
Learning to Remember More with Less Memorization. ICLR 2019 - [c52]Hoang Thanh-Tung, Truyen Tran, Svetha Venkatesh:
Improving Generalization and Stability of Generative Adversarial Networks. ICLR (Poster) 2019 - [c51]Hoa Khanh Dam, Truyen Tran, John C. Grundy, Aditya Ghose, Yasutaka Kamei:
Towards effective AI-powered agile project management. ICSE (NIER) 2019: 41-44 - [c50]Kien Do, Truyen Tran, Svetha Venkatesh:
Graph Transformation Policy Network for Chemical Reaction Prediction. KDD 2019: 750-760 - [c49]Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John C. Grundy, Aditya Ghose, Taeksu Kim, Chul-Joo Kim:
Lessons learned from using a deep tree-based model for software defect prediction in practice. MSR 2019: 46-57 - [c48]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Matthew Barnett, Svetha Venkatesh:
Incomplete Conditional Density Estimation for Fast Materials Discovery. SDM 2019: 549-557 - [i61]Hung Le, Truyen Tran, Svetha Venkatesh:
Learning to Remember More with Less Memorization. CoRR abs/1901.01347 (2019) - [i60]Hoang Thanh-Tung, Truyen Tran, Svetha Venkatesh:
Improving Generalization and Stability of Generative Adversarial Networks. CoRR abs/1902.03984 (2019) - [i59]Romero F. A. B. de Morais, Vuong Le, Truyen Tran, Budhaditya Saha, Moussa Reda Mansour, Svetha Venkatesh:
Learning Regularity in Skeleton Trajectories for Anomaly Detection in Videos. CoRR abs/1903.03295 (2019) - [i58]Hung Le, Truyen Tran, Svetha Venkatesh:
Neural Stored-program Memory. CoRR abs/1906.08862 (2019) - [i57]Thao Minh Le, Vuong Le, Svetha Venkatesh, Truyen Tran:
Learning to Reason with Relational Video Representation for Question Answering. CoRR abs/1907.04553 (2019) - [i56]Kien Do, Truyen Tran:
Theory and Evaluation Metrics for Learning Disentangled Representations. CoRR abs/1908.09961 (2019) - [i55]Thommen George Karimpanal, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh:
Learning Transferable Domain Priors for Safe Exploration in Reinforcement Learning. CoRR abs/1909.04307 (2019) - 2018
- [j16]Kien Do, Truyen Tran, Svetha Venkatesh:
Energy-based anomaly detection for mixed data. Knowl. Inf. Syst. 57(2): 413-435 (2018) - [j15]Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose, John Grundy:
Predicting Delivery Capability in Iterative Software Development. IEEE Trans. Software Eng. 44(6): 551-573 (2018) - [c47]Kien Do, Truyen Tran, Svetha Venkatesh:
Knowledge Graph Embedding with Multiple Relation Projections. ICPR 2018: 332-337 - [c46]Trang Pham, Truyen Tran, Svetha Venkatesh:
Graph Memory Networks for Molecular Activity Prediction. ICPR 2018: 639-644 - [c45]Hoa Khanh Dam, Truyen Tran, Aditya Ghose:
Explainable software analytics. ICSE (NIER) 2018: 53-56 - [c44]Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose:
Predicting components for issue reports using deep learning with information retrieval. ICSE (Companion Volume) 2018: 244-245 - [c43]Phuoc Nguyen, Truyen Tran, Svetha Venkatesh:
Resset: A Recurrent Model for Sequence of Sets with Applications to Electronic Medical Records. IJCNN 2018: 1-9 - [c42]Hung Le, Truyen Tran, Svetha Venkatesh:
Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning. KDD 2018: 1637-1645 - [c41]Hung Le, Truyen Tran, Thin Nguyen, Svetha Venkatesh:
Variational Memory Encoder-Decoder. NeurIPS 2018: 1515-1525 - [c40]Hung Le, Truyen Tran, Svetha Venkatesh:
Dual Control Memory Augmented Neural Networks for Treatment Recommendations. PAKDD (3) 2018: 273-284 - [i54]Trang Pham, Truyen Tran, Svetha Venkatesh:
Graph Memory Networks for Molecular Activity Prediction. CoRR abs/1801.02622 (2018) - [i53]Kien Do, Truyen Tran, Svetha Venkatesh:
Knowledge Graph Embedding with Multiple Relation Projections. CoRR abs/1801.08641 (2018) - [i52]Hoa Khanh Dam, Truyen Tran, Aditya Ghose:
Explainable Software Analytics. CoRR abs/1802.00603 (2018) - [i51]Hung Le, Truyen Tran, Svetha Venkatesh:
Dual Memory Neural Computer for Asynchronous Two-view Sequential Learning. CoRR abs/1802.00662 (2018) - [i50]Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen Tran, John Grundy, Aditya Ghose, Taeksu Kim, Chul-Joo Kim:
A deep tree-based model for software defect prediction. CoRR abs/1802.00921 (2018) - [i49]Muhammad Asjad Khan, Hung Le, Kien Do, Truyen Tran, Aditya Ghose, Khanh Hoa Dam, Renuka Sindhgatta:
Memory-Augmented Neural Networks for Predictive Process Analytics. CoRR abs/1802.00938 (2018) - [i48]Phuoc Nguyen, Truyen Tran, Svetha Venkatesh:
Resset: A Recurrent Model for Sequence of Sets with Applications to Electronic Medical Records. CoRR abs/1802.00948 (2018) - [i47]Hung Le, Truyen Tran, Svetha Venkatesh:
Dual Control Memory Augmented Neural Networks for Treatment Recommendations. CoRR abs/1802.03689 (2018) - [i46]Kien Do, Truyen Tran, Thin Nguyen, Svetha Venkatesh:
Attentional Multilabel Learning over Graphs: A Message Passing Approach. CoRR abs/1804.00293 (2018) - [i45]Hoang Thanh-Tung, Truyen Tran, Svetha Venkatesh:
On catastrophic forgetting and mode collapse in Generative Adversarial Networks. CoRR abs/1807.04015 (2018) - [i44]Hung Le, Truyen Tran, Thin Nguyen, Svetha Venkatesh:
Variational Memory Encoder-Decoder. CoRR abs/1807.09950 (2018) - [i43]Trang Pham, Truyen Tran, Svetha Venkatesh:
Relational dynamic memory networks. CoRR abs/1808.04247 (2018) - [i42]Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Svetha Venkatesh:
Hybrid Generative-Discriminative Models for Inverse Materials Design. CoRR abs/1811.06060 (2018) - [i41]Kien Do, Truyen Tran, Svetha Venkatesh:
Graph Transformation Policy Network for Chemical Reaction Prediction. CoRR abs/1812.09441 (2018) - [i40]Hoa Khanh Dam, Truyen Tran, John C. Grundy, Aditya Ghose, Yasutaka Kamei:
Towards effective AI-powered agile project management. CoRR abs/1812.10578 (2018) - 2017
- [j14]Truyen Tran, Dinh Quoc Phung, Hung Bui, Svetha Venkatesh:
Hierarchical semi-Markov conditional random fields for deep recursive sequential data. Artif. Intell. 246: 53-85 (2017) - [j13]Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose:
Predicting the delay of issues with due dates in software projects. Empir. Softw. Eng. 22(3): 1223-1263 (2017) - [j12]Trang Pham, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Predicting healthcare trajectories from medical records: A deep learning approach. J. Biomed. Informatics 69: 218-229 (2017) - [j11]Shaowu Liu, Gang Li, Truyen Tran, Yuan Jiang:
Preference Relation-based Markov Random Fields for Recommender Systems. Mach. Learn. 106(4): 523-546 (2017) - [j10]Shaowu Liu, Gang Li, Truyen Tran, Yuan Jiang:
Erratum to: Preference Relation-based Markov Random Fields for Recommender Systems. Mach. Learn. 106(4): 547 (2017) - [j9]Phuoc Nguyen, Truyen Tran, Nilmini Wickramasinghe, Svetha Venkatesh:
Deepr: A Convolutional Net for Medical Records. IEEE J. Biomed. Health Informatics 21(1): 22-30 (2017) - [c39]Trang Pham, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Column Networks for Collective Classification. AAAI 2017: 2485-2491 - [c38]Phuoc Nguyen, Truyen Tran, Svetha Venkatesh:
Deep Learning to Attend to Risk in ICU. KDH@IJCAI 2017: 25-29 - [i39]Trang Pham, Truyen Tran, Svetha Venkatesh:
One Size Fits Many: Column Bundle for Multi-X Learning. CoRR abs/1702.07021 (2017) - [i38]Kien Do, Truyen Tran, Svetha Venkatesh:
Matrix-centric Neural Networks. CoRR abs/1703.01454 (2017) - [i37]Phuoc Nguyen, Truyen Tran, Svetha Venkatesh:
Deep Learning to Attend to Risk in ICU. CoRR abs/1707.05010 (2017) - [i36]Hoa Khanh Dam, Truyen Tran, Trang Pham, Shien Wee Ng, John Grundy, Aditya Ghose:
Automatic feature learning for vulnerability prediction. CoRR abs/1708.02368 (2017) - [i35]Trang Pham, Truyen Tran, Khanh Hoa Dam, Svetha Venkatesh:
Graph Classification via Deep Learning with Virtual Nodes. CoRR abs/1708.04357 (2017) - [i34]Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Statistical Latent Space Approach for Mixed Data Modelling and Applications. CoRR abs/1708.05594 (2017) - [i33]Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Nonnegative Restricted Boltzmann Machines for Parts-based Representations Discovery and Predictive Model Stabilization. CoRR abs/1708.05603 (2017) - [i32]Phuoc Nguyen, Truyen Tran, Svetha Venkatesh:
Finding Algebraic Structure of Care in Time: A Deep Learning Approach. CoRR abs/1711.07980 (2017) - 2016
- [j8]Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Graph-induced restricted Boltzmann machines for document modeling. Inf. Sci. 328: 60-75 (2016) - [j7]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Collaborative filtering via sparse Markov random fields. Inf. Sci. 369: 221-237 (2016) - [j6]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Modelling human preferences for ranking and collaborative filtering: a probabilistic ordered partition approach. Knowl. Inf. Syst. 47(1): 157-188 (2016) - [c37]Kien Do, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Outlier Detection on Mixed-Type Data: An Energy-Based Approach. ADMA 2016: 111-125 - [c36]Shivapratap Gopakumar, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Stabilizing Linear Prediction Models Using Autoencoder. ADMA 2016: 651-663 - [c35]Shivapratap Gopakumar, Truyen Tran, Wei Luo, Dinh Q. Phung, Svetha Venkatesh:
Forecasting Patient Outflow from Wards having No Real-Time Clinical Data. ICHI 2016: 177-183 - [c34]Trang Pham, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Faster training of very deep networks via p-norm gates. ICPR 2016: 3542-3547 - [c33]Truyen Tran, Wei Luo, Dinh Q. Phung, Jonathan Morris, Kristen Rickard, Svetha Venkatesh:
Preterm Birth Prediction: Stable Selection of Interpretable Rules from High Dimensional Data. MLHC 2016: 164-177 - [c32]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Neural Choice by Elimination via Highway Networks. PAKDD Workshops 2016: 15-25 - [c31]Trang Pham, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
DeepCare: A Deep Dynamic Memory Model for Predictive Medicine. PAKDD (2) 2016: 30-41 - [c30]Hoa Khanh Dam, Truyen Tran, John C. Grundy, Aditya K. Ghose:
DeepSoft: a vision for a deep model of software. SIGSOFT FSE 2016: 944-947 - [i31]Trang Pham, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
DeepCare: A Deep Dynamic Memory Model for Predictive Medicine. CoRR abs/1602.00357 (2016) - [i30]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Collaborative filtering via sparse Markov random fields. CoRR abs/1602.02842 (2016) - [i29]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Choice by Elimination via Deep Neural Networks. CoRR abs/1602.05285 (2016) - [i28]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Learning deep representation of multityped objects and tasks. CoRR abs/1603.01359 (2016) - [i27]Nguyen Cong Thuong, Truyen Tran, Shivapratap Gopakumar, Dinh Q. Phung, Svetha Venkatesh:
An evaluation of randomized machine learning methods for redundant data: Predicting short and medium-term suicide risk from administrative records and risk assessments. CoRR abs/1605.01116 (2016) - [i26]Phuoc Nguyen, Truyen Tran, Nilmini Wickramasinghe, Svetha Venkatesh:
Deepr: A Convolutional Net for Medical Records. CoRR abs/1607.07519 (2016) - [i25]Hoa Khanh Dam, Truyen Tran, John Grundy, Aditya K. Ghose:
DeepSoft: A vision for a deep model of software. CoRR abs/1608.00092 (2016) - [i24]Hoa Khanh Dam, Truyen Tran, Trang Pham:
A deep language model for software code. CoRR abs/1608.02715 (2016) - [i23]Trang Pham, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Faster Training of Very Deep Networks Via p-Norm Gates. CoRR abs/1608.03639 (2016) - [i22]Kien Do, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Outlier Detection on Mixed-Type Data: An Energy-based Approach. CoRR abs/1608.04830 (2016) - [i21]Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya Ghose, Tim Menzies:
A deep learning model for estimating story points. CoRR abs/1609.00489 (2016) - [i20]Trang Pham, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Column Networks for Collective Classification. CoRR abs/1609.04508 (2016) - [i19]Kien Do, Truyen Tran, Svetha Venkatesh:
Multilevel Anomaly Detection for Mixed Data. CoRR abs/1610.06249 (2016) - 2015
- [j5]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Tree-based iterated local search for Markov random fields with applications in image analysis. J. Heuristics 21(1): 25-45 (2015) - [j4]Truyen Tran, Tu Dinh Nguyen, Dinh Q. Phung, Svetha Venkatesh:
Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J. Biomed. Informatics 54: 96-105 (2015) - [j3]Truyen Tran, Dinh Q. Phung, Wei Luo, Svetha Venkatesh:
Stabilized sparse ordinal regression for medical risk stratification. Knowl. Inf. Syst. 43(3): 555-582 (2015) - [j2]Shivapratap Gopakumar, Truyen Tran, Tu Dinh Nguyen, Dinh Q. Phung, Svetha Venkatesh:
Stabilizing High-Dimensional Prediction Models Using Feature Graphs. IEEE J. Biomed. Health Informatics 19(3): 1044-1052 (2015) - [c29]Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Tensor-Variate Restricted Boltzmann Machines. AAAI 2015: 2887-2893 - [c28]Shaowu Liu, Gang Li, Truyen Tran, Yuan Jiang:
Preference Relation-based Markov Random Fields for Recommender Systems. ACML 2015: 157-172 - [c27]Morakot Choetkiertikul, Daniel Avery, Hoa Khanh Dam, Truyen Tran, Aditya K. Ghose:
Who Will Answer My Question on Stack Overflow? ASWEC 2015: 155-164 - [c26]Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose:
Predicting Delays in Software Projects Using Networked Classification (T). ASE 2015: 353-364 - [c25]Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Aditya Ghose:
Characterization and Prediction of Issue-Related Risks in Software Projects. MSR 2015: 280-291 - [c24]Shivapratap Gopakumar, Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Stabilizing Sparse Cox Model Using Statistic and Semantic Structures in Electronic Medical Records. PAKDD (2) 2015: 331-343 - 2014
- [j1]Truyen Tran, Wei Luo, Dinh Q. Phung, Sunil Gupta, Santu Rana, Richard Kennedy, Ann Larkins, Svetha Venkatesh:
A framework for feature extraction from hospital medical data with applications in risk prediction. BMC Bioinform. 15: 6596 (2014) - [c23]Shaowu Liu, Truyen Tran, Gang Li:
Ordinal Random Fields for Recommender Systems. ACML 2014 - [c22]Thin Nguyen, Dinh Q. Phung, Wei Luo, Truyen Tran, Svetha Venkatesh:
iPoll: Automatic Polling Using Online Search. WISE (1) 2014: 266-275 - [i18]Truyen Tran, Trung Thanh Nguyen, Hoang Linh Nguyen:
Global optimization using Lévy flights. CoRR abs/1407.5739 (2014) - [i17]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Tree-based iterated local search for Markov random fields with applications in image analysis. CoRR abs/1407.5754 (2014) - [i16]Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh:
Preference Networks: Probabilistic Models for Recommendation Systems. CoRR abs/1407.5764 (2014) - [i15]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Learning Rank Functionals: An Empirical Study. CoRR abs/1407.6089 (2014) - [i14]Shivapratap Gopakumar, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Stabilizing Sparse Cox Model using Clinical Structures in Electronic Medical Records. CoRR abs/1407.6094 (2014) - [i13]Truyen Tran, Svetha Venkatesh:
Permutation Models for Collaborative Ranking. CoRR abs/1407.6128 (2014) - [i12]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Learning Structured Outputs from Partial Labels using Forest Ensemble. CoRR abs/1407.6432 (2014) - [i11]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Learning From Ordered Sets and Applications in Collaborative Ranking. CoRR abs/1408.0043 (2014) - [i10]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Cumulative Restricted Boltzmann Machines for Ordinal Matrix Data Analysis. CoRR abs/1408.0047 (2014) - [i9]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Thurstonian Boltzmann Machines: Learning from Multiple Inequalities. CoRR abs/1408.0055 (2014) - [i8]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Mixed-Variate Restricted Boltzmann Machines. CoRR abs/1408.1160 (2014) - [i7]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh, Hung Hai Bui:
MCMC for Hierarchical Semi-Markov Conditional Random Fields. CoRR abs/1408.1162 (2014) - [i6]Tran The Truyen, Hung Bui, Svetha Venkatesh:
Boosted Markov Networks for Activity Recognition. CoRR abs/1408.1167 (2014) - [i5]Tran The Truyen, Hung Bui, Svetha Venkatesh:
Human Activity Learning and Segmentation using Partially Hidden Discriminative Models. CoRR abs/1408.3081 (2014) - 2013
- [c21]Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Learning Parts-based Representations with Nonnegative Restricted Boltzmann Machine. ACML 2013: 133-148 - [c20]Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Learning sparse latent representation and distance metric for image retrieval. ICME 2013: 1-6 - [c19]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Thurstonian Boltzmann Machines: Learning from Multiple Inequalities. ICML (2) 2013: 46-54 - [c18]Truyen Tran, Dinh Q. Phung, Wei Luo, Richard Harvey, Michael Berk, Svetha Venkatesh:
An integrated framework for suicide risk prediction. KDD 2013: 1410-1418 - [c17]Tu Dinh Nguyen, Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Latent Patient Profile Modelling and Applications with Mixed-Variate Restricted Boltzmann Machine. PAKDD (1) 2013: 123-135 - 2012
- [c16]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
A Sequential Decision Approach to Ordinal Preferences in Recommender Systems. AAAI 2012: 676-682 - [c15]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Embedded Restricted Boltzmann Machines for fusion of mixed data types and applications in social measurements analysis. FUSION 2012: 1814-1821 - [c14]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Learning Boltzmann Distance Metric for Face Recognition. ICME 2012: 218-223 - [c13]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Cumulative Restricted Boltzmann Machines for Ordinal Matrix Data Analysis. ACML 2012: 411-426 - [c12]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Learning From Ordered Sets and Applications in Collaborative Ranking. ACML 2012: 427-442 - [i4]Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh:
Ordinal Boltzmann Machines for Collaborative Filtering. CoRR abs/1205.2611 (2012) - [i3]Tran The Truyen, Duc Son Pham:
ConeRANK: Ranking as Learning Generalized Inequalities. CoRR abs/1206.4110 (2012) - 2011
- [c11]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Probabilistic Models over Ordered Partitions with Applications in Document Ranking and Collaborative Filtering. SDM 2011: 426-437 - [c10]Truyen Tran, Dinh Q. Phung, Svetha Venkatesh:
Mixed-Variate Restricted Boltzmann Machines. ACML 2011: 213-229 - 2010
- [c9]Sunil Kumar Gupta, Dinh Q. Phung, Brett Adams, Truyen Tran, Svetha Venkatesh:
Nonnegative shared subspace learning and its application to social media retrieval. KDD 2010: 1169-1178 - [c8]Thin Nguyen, Dinh Q. Phung, Brett Adams, Truyen Tran, Svetha Venkatesh:
Hyper-community detection in the blogosphere. WSM@MM 2010: 21-26 - [c7]Thin Nguyen, Dinh Q. Phung, Brett Adams, Truyen Tran, Svetha Venkatesh:
Classification and Pattern Discovery of Mood in Weblogs. PAKDD (2) 2010: 283-290 - [i2]Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh:
Probabilistic Models over Ordered Partitions with Application in Learning to Rank. CoRR abs/1009.1690 (2010) - [i1]Tran The Truyen, Dinh Q. Phung, Hung Hai Bui, Svetha Venkatesh:
Hierarchical Semi-Markov Conditional Random Fields for Recursive Sequential Data. CoRR abs/1009.2009 (2010)
2000 – 2009
- 2009
- [c6]Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh:
Ordinal Boltzmann Machines for Collaborative Filtering. UAI 2009: 548-556 - 2008
- [c5]Tran The Truyen, Dinh Q. Phung, Hung Bui, Svetha Venkatesh:
Hierarchical Semi-Markov Conditional Random Fields for Recursive Sequential Data. NIPS 2008: 1657-1664 - [c4]Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh:
Constrained Sequence Classification for Lexical Disambiguation. PRICAI 2008: 430-441 - [c3]Tran The Truyen, Hung Hai Bui, Dinh Q. Phung, Svetha Venkatesh:
Learning Discriminative Sequence Models from Partially Labelled Data for Activity Recognition. PRICAI 2008: 903-912 - 2007
- [c2]Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh:
Preference Networks: Probabilistic Models for Recommendation Systems. AusDM 2007: 195-202 - 2006
- [c1]Tran The Truyen, Dinh Q. Phung, Svetha Venkatesh, Hung Hai Bui:
AdaBoost.MRF: Boosted Markov Random Forests and Application to Multilevel Activity Recognition. CVPR (2) 2006: 1686-1693
Coauthor Index
aka: Hoa Khanh Dam
aka: Aditya K. Ghose
aka: Dinh Quoc Phung
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-27 00:50 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint