default search action
Guido Montúfar
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j24]Mareike Dressler, Marina Garrote-López, Guido Montúfar, Johannes Müller, Kemal Rose:
Algebraic optimization of sequential decision problems. J. Symb. Comput. 121: 102241 (2024) - [j23]Kathlén Kohn, Guido Montúfar, Vahid Shahverdi, Matthew Trager:
Function Space and Critical Points of Linear Convolutional Networks. SIAM J. Appl. Algebra Geom. 8(2): 333-362 (2024) - [j22]Kedar Karhadkar, Michael Murray, Hanna Tseran, Guido Montúfar:
Mildly Overparameterized ReLU Networks Have a Favorable Loss Landscape. Trans. Mach. Learn. Res. 2024 (2024) - [j21]Shuang Liang, Renata Turkes, Jiayi Li, Nina Otter, Guido Montúfar:
Pull-back Geometry of Persistent Homology Encodings. Trans. Mach. Learn. Res. 2024 (2024) - [i62]Kedar Karhadkar, Erin George, Michael Murray, Guido Montúfar, Deanna Needell:
Benign overfitting in leaky ReLU networks with moderate input dimension. CoRR abs/2403.06903 (2024) - [i61]Marie-Charlotte Brandenburg, Georg Loho, Guido Montúfar:
The Real Tropical Geometry of Neural Networks. CoRR abs/2403.11871 (2024) - [i60]Johannes Müller, Semih Cayci, Guido Montúfar:
Fisher-Rao Gradient Flows of Linear Programs and State-Action Natural Policy Gradients. CoRR abs/2403.19448 (2024) - [i59]Kedar Karhadkar, Michael Murray, Guido Montúfar:
Bounds for the smallest eigenvalue of the NTK for arbitrary spherical data of arbitrary dimension. CoRR abs/2405.14630 (2024) - [i58]Shuang Liang, Guido Montúfar:
Implicit Bias of Mirror Descent for Shallow Neural Networks in Univariate Regression. CoRR abs/2410.03988 (2024) - [i57]Niket Patel, Guido Montúfar:
On the Local Complexity of Linear Regions in Deep ReLU Networks. CoRR abs/2412.18283 (2024) - 2023
- [j20]Johannes Rauh, Pradeep Kr. Banerjee, Eckehard Olbrich, Guido Montúfar, Jürgen Jost:
Continuity and additivity properties of information decompositions. Int. J. Approx. Reason. 161: 108979 (2023) - [j19]Hui Jin, Guido Montúfar:
Implicit Bias of Gradient Descent for Mean Squared Error Regression with Two-Layer Wide Neural Networks. J. Mach. Learn. Res. 24: 137:1-137:97 (2023) - [c35]Kedar Karhadkar, Pradeep Kr. Banerjee, Guido Montúfar:
FoSR: First-order spectral rewiring for addressing oversquashing in GNNs. ICLR 2023 - [c34]Michael Murray, Hui Jin, Benjamin Bowman, Guido Montúfar:
Characterizing the spectrum of the NTK via a power series expansion. ICLR 2023 - [c33]Pierre Bréchet, Katerina Papagiannouli, Jing An, Guido Montúfar:
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss. ICML 2023: 3106-3147 - [c32]Hanna Tseran, Guido Montúfar:
Expected Gradients of Maxout Networks and Consequences to Parameter Initialization. ICML 2023: 34491-34532 - [i56]Hanna Tseran, Guido Montúfar:
Expected Gradients of Maxout Networks and Consequences to Parameter Initialization. CoRR abs/2301.06956 (2023) - [i55]Pierre Bréchet, Katerina Papagiannouli, Jing An, Guido Montúfar:
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss. CoRR abs/2303.03027 (2023) - [i54]Kathlén Kohn, Guido Montúfar, Vahid Shahverdi, Matthew Trager:
Function Space and Critical Points of Linear Convolutional Networks. CoRR abs/2304.05752 (2023) - [i53]Rishi Sonthalia, Anna Seigal, Guido Montúfar:
Supermodular Rank: Set Function Decomposition and Optimization. CoRR abs/2305.14632 (2023) - [i52]Kedar Karhadkar, Michael Murray, Hanna Tseran, Guido Montúfar:
Mildly Overparameterized ReLU Networks Have a Favorable Loss Landscape. CoRR abs/2305.19510 (2023) - 2022
- [j18]Guido Montúfar, Yu Guang Wang:
Distributed Learning via Filtered Hyperinterpolation on Manifolds. Found. Comput. Math. 22(4): 1219-1271 (2022) - [j17]Guido Montúfar, Yue Ren, Leon Zhang:
Sharp Bounds for the Number of Regions of Maxout Networks and Vertices of Minkowski Sums. SIAM J. Appl. Algebra Geom. 6(1): 618-649 (2022) - [j16]Kathlén Kohn, Thomas Merkh, Guido Montúfar, Matthew Trager:
Geometry of Linear Convolutional Networks. SIAM J. Appl. Algebra Geom. 6(3): 368-406 (2022) - [c31]Pradeep Kr. Banerjee, Kedar Karhadkar, Yuguang Wang, Uri Alon, Guido Montúfar:
Oversquashing in GNNs through the lens of information contraction and graph expansion. Allerton 2022: 1-8 - [c30]Benjamin Bowman, Guido Montúfar:
Implicit Bias of MSE Gradient Optimization in Underparameterized Neural Networks. ICLR 2022 - [c29]Hui Jin, Pradeep Kr. Banerjee, Guido Montúfar:
Learning Curves for Gaussian Process Regression with Power-Law Priors and Targets. ICLR 2022 - [c28]Johannes Müller, Guido Montúfar:
The Geometry of Memoryless Stochastic Policy Optimization in Infinite-Horizon POMDPs. ICLR 2022 - [c27]Benjamin Bowman, Guido F. Montúfar:
Spectral Bias Outside the Training Set for Deep Networks in the Kernel Regime. NeurIPS 2022 - [c26]Renata Turkes, Guido F. Montúfar, Nina Otter:
On the Effectiveness of Persistent Homology. NeurIPS 2022 - [i51]Benjamin Bowman, Guido Montúfar:
Implicit Bias of MSE Gradient Optimization in Underparameterized Neural Networks. CoRR abs/2201.04738 (2022) - [i50]Johannes Rauh, Pradeep Kr. Banerjee, Eckehard Olbrich, Guido Montúfar, Jürgen Jost:
Continuity and Additivity Properties of Information Decompositions. CoRR abs/2204.10982 (2022) - [i49]Johannes Müller, Guido Montúfar:
Solving infinite-horizon POMDPs with memoryless stochastic policies in state-action space. CoRR abs/2205.14098 (2022) - [i48]Benjamin Bowman, Guido Montúfar:
Spectral Bias Outside the Training Set for Deep Networks in the Kernel Regime. CoRR abs/2206.02927 (2022) - [i47]Renata Turkes, Guido Montúfar, Nina Otter:
On the effectiveness of persistent homology. CoRR abs/2206.10551 (2022) - [i46]Pradeep Kr. Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, Guido Montúfar:
Oversquashing in GNNs through the lens of information contraction and graph expansion. CoRR abs/2208.03471 (2022) - [i45]Laura Escobar, Patricio Gallardo, Javier González-Anaya, José L. González, Guido Montúfar, Alejandro H. Morales:
Enumeration of max-pooling responses with generalized permutohedra. CoRR abs/2209.14978 (2022) - [i44]Kedar Karhadkar, Pradeep Kr. Banerjee, Guido Montúfar:
FoSR: First-order spectral rewiring for addressing oversquashing in GNNs. CoRR abs/2210.11790 (2022) - [i43]Johannes Müller, Guido Montúfar:
Geometry and convergence of natural policy gradient methods. CoRR abs/2211.02105 (2022) - [i42]Michael Murray, Hui Jin, Benjamin Bowman, Guido Montúfar:
Characterizing the Spectrum of the NTK via a Power Series Expansion. CoRR abs/2211.07844 (2022) - [i41]Mareike Dressler, Marina Garrote-López, Guido Montúfar, Johannes Müller, Kemal Rose:
Algebraic optimization of sequential decision problems. CoRR abs/2211.09439 (2022) - 2021
- [j15]Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, Lorenzo Venturello:
Wasserstein distance to independence models. J. Symb. Comput. 104: 855-873 (2021) - [c25]Alex Tong Lin, Wuchen Li, Stanley J. Osher, Guido Montúfar:
Wasserstein Proximal of GANs. GSI 2021: 524-533 - [c24]Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F. Montúfar, Pietro Lió, Michael M. Bronstein:
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks. ICML 2021: 1026-1037 - [c23]Quynh Nguyen, Marco Mondelli, Guido F. Montúfar:
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks. ICML 2021: 8119-8129 - [c22]Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yuguang Wang, Pietro Lió, Ming Li, Guido Montúfar:
How Framelets Enhance Graph Neural Networks. ICML 2021: 12761-12771 - [c21]Pradeep Kr. Banerjee, Guido Montúfar:
Information Complexity and Generalization Bounds. ISIT 2021: 676-681 - [c20]Alex Tong Lin, Mark J. Debord, Katia Estabridis, Gary A. Hewer, Guido Montúfar, Stanley J. Osher:
Decentralized Multi-Agents by Imitation of a Centralized Controller. MSML 2021: 619-651 - [c19]Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F. Montúfar, Michael M. Bronstein:
Weisfeiler and Lehman Go Cellular: CW Networks. NeurIPS 2021: 2625-2640 - [c18]Hanna Tseran, Guido Montúfar:
On the Expected Complexity of Maxout Networks. NeurIPS 2021: 28995-29008 - [i40]Alex Tong Lin, Wuchen Li, Stanley J. Osher, Guido Montúfar:
Wasserstein Proximal of GANs. CoRR abs/2102.06862 (2021) - [i39]Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yu Guang Wang, Pietro Liò, Ming Li, Guido Montúfar:
How Framelets Enhance Graph Neural Networks. CoRR abs/2102.06986 (2021) - [i38]Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar, Pietro Liò, Michael M. Bronstein:
Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks. CoRR abs/2103.03212 (2021) - [i37]Guido Montúfar, Yue Ren, Leon Zhang:
Sharp bounds for the number of regions of maxout networks and vertices of Minkowski sums. CoRR abs/2104.08135 (2021) - [i36]Pradeep Kr. Banerjee, Guido Montúfar:
Information Complexity and Generalization Bounds. CoRR abs/2105.01747 (2021) - [i35]Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montúfar, Michael M. Bronstein:
Weisfeiler and Lehman Go Cellular: CW Networks. CoRR abs/2106.12575 (2021) - [i34]Hanna Tseran, Guido Montúfar:
On the Expected Complexity of Maxout Networks. CoRR abs/2107.00379 (2021) - [i33]Kathlén Kohn, Thomas Merkh, Guido Montúfar, Matthew Trager:
Geometry of Linear Convolutional Networks. CoRR abs/2108.01538 (2021) - [i32]Johannes Müller, Guido Montúfar:
The Geometry of Memoryless Stochastic Policy Optimization in Infinite-Horizon POMDPs. CoRR abs/2110.07409 (2021) - [i31]Hui Jin, Pradeep Kr. Banerjee, Guido Montúfar:
Learning curves for Gaussian process regression with power-law priors and targets. CoRR abs/2110.12231 (2021) - [i30]Dohyun Kwon, Yeoneung Kim, Guido Montúfar, Insoon Yang:
Training Wasserstein GANs without gradient penalties. CoRR abs/2110.14150 (2021) - 2020
- [j14]Thomas Merkh, Guido Montúfar:
Factorized mutual information maximization. Kybernetika 56(5): 948-978 (2020) - [c17]Michael Arbel, Arthur Gretton, Wuchen Li, Guido Montúfar:
Kernelized Wasserstein Natural Gradient. ICLR 2020 - [c16]Yonatan Dukler, Quanquan Gu, Guido Montúfar:
Optimization Theory for ReLU Neural Networks Trained with Normalization Layers. ICML 2020: 2751-2760 - [c15]Yuguang Wang, Ming Li, Zheng Ma, Guido Montúfar, Xiaosheng Zhuang, Yanan Fan:
Haar Graph Pooling. ICML 2020: 9952-9962 - [c14]Pradeep Kr. Banerjee, Guido Montúfar:
The Variational Deficiency Bottleneck. IJCNN 2020: 1-8 - [i29]Yonatan Dukler, Quanquan Gu, Guido Montúfar:
Optimization Theory for ReLU Neural Networks Trained with Normalization Layers. CoRR abs/2006.06878 (2020) - [i28]Hui Jin, Guido Montúfar:
Implicit bias of gradient descent for mean squared error regression with wide neural networks. CoRR abs/2006.07356 (2020) - [i27]Guido Montúfar, Yu Guang Wang:
Distributed Learning via Filtered Hyperinterpolation on Manifolds. CoRR abs/2007.09392 (2020) - [i26]Guido Montúfar, Nina Otter, Yuguang Wang:
Can neural networks learn persistent homology features? CoRR abs/2011.14688 (2020) - [i25]Quynh Nguyen, Marco Mondelli, Guido Montúfar:
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks. CoRR abs/2012.11654 (2020)
2010 – 2019
- 2019
- [c13]Wuchen Li, Alex Tong Lin, Guido Montúfar:
Affine Natural Proximal Learning. GSI 2019: 705-714 - [c12]Yonatan Dukler, Wuchen Li, Alex Tong Lin, Guido Montúfar:
Wasserstein of Wasserstein Loss for Learning Generative Models. ICML 2019: 1716-1725 - [c11]Türkü Özlüm Çelik, Asgar Jamneshan, Guido Montúfar, Bernd Sturmfels, Lorenzo Venturello:
Optimal Transport to a Variety. MACIS 2019: 364-381 - [i24]Thomas Merkh, Guido Montúfar:
Factorized Mutual Information Maximization. CoRR abs/1906.05460 (2019) - [i23]Alex Tong Lin, Yonatan Dukler, Wuchen Li, Guido Montúfar:
Wasserstein Diffusion Tikhonov Regularization. CoRR abs/1909.06860 (2019) - [i22]Yu Guang Wang, Ming Li, Zheng Ma, Guido Montúfar, Xiaosheng Zhuang, Yanan Fan:
HaarPooling: Graph Pooling with Compressive Haar Basis. CoRR abs/1909.11580 (2019) - [i21]Anton Mallasto, Guido Montúfar, Augusto Gerolin:
How Well Do WGANs Estimate the Wasserstein Metric? CoRR abs/1910.03875 (2019) - [i20]Michael Arbel, Arthur Gretton, Wuchen Li, Guido Montúfar:
Kernelized Wasserstein Natural Gradient. CoRR abs/1910.09652 (2019) - [i19]Thomas Merkh, Guido Montúfar:
Stochastic Feedforward Neural Networks: Universal Approximation. CoRR abs/1910.09763 (2019) - 2018
- [c10]Pradeep Kr. Banerjee, Johannes Rauh, Guido Montúfar:
Computing the Unique Information. ISIT 2018: 141-145 - [i18]Wuchen Li, Guido Montúfar:
Natural gradient via optimal transport I. CoRR abs/1803.07033 (2018) - [i17]Guido Montúfar:
Restricted Boltzmann Machines: Introduction and Review. CoRR abs/1806.07066 (2018) - [i16]Wuchen Li, Guido Montúfar:
Ricci curvature for parametric statistics via optimal transport. CoRR abs/1807.07095 (2018) - [i15]Pradeep Kr. Banerjee, Guido Montúfar:
The Variational Deficiency Bottleneck. CoRR abs/1810.11677 (2018) - 2017
- [j13]Guido Montúfar, Johannes Rauh:
Hierarchical models as marginals of hierarchical models. Int. J. Approx. Reason. 88: 531-546 (2017) - [j12]Guido Montúfar, Jason Morton:
Dimension of Marginals of Kronecker Product Models. SIAM J. Appl. Algebra Geom. 1(1): 126-151 (2017) - [c9]Guido Montúfar, Johannes Rauh:
Geometry of Policy Improvement. GSI 2017: 282-290 - [c8]Keyan Ghazi-Zahedi, Raphael Deimel, Guido Montúfar, Vincent Wall, Oliver Brock:
Morphological computation: The good, the bad, and the ugly. IROS 2017: 464-469 - [i14]Guido Montúfar, Johannes Rauh:
Geometry of Policy Improvement. CoRR abs/1704.01785 (2017) - [i13]Pradeep Kr. Banerjee, Johannes Rauh, Guido Montúfar:
Computing the Unique Information. CoRR abs/1709.07487 (2017) - 2016
- [j11]Keyan Ghazi-Zahedi, Daniel F. B. Haeufle, Guido Montúfar, Syn Schmitt, Nihat Ay:
Evaluating Morphological Computation in Muscle and DC-Motor Driven Models of Hopping Movements. Frontiers Robotics AI 3: 42 (2016) - [i12]Guido Montúfar, Keyan Ghazi-Zahedi, Nihat Ay:
Information Theoretically Aided Reinforcement Learning for Embodied Agents. CoRR abs/1605.09735 (2016) - 2015
- [j10]Guido Montúfar, Jason Morton:
Discrete restricted Boltzmann machines. J. Mach. Learn. Res. 16: 653-672 (2015) - [j9]Guido Montúfar, Nihat Ay, Keyan Ghazi-Zahedi:
Geometry and expressive power of conditional restricted Boltzmann machines. J. Mach. Learn. Res. 16: 2405-2436 (2015) - [j8]Guido Montúfar, Keyan Ghazi-Zahedi, Nihat Ay:
A Theory of Cheap Control in Embodied Systems. PLoS Comput. Biol. 11(9) (2015) - [j7]Guido F. Montúfar, Jason Morton:
When Does a Mixture of Products Contain a Product of Mixtures? SIAM J. Discret. Math. 29(1): 321-347 (2015) - [c7]Guido Montúfar:
Deep Narrow Boltzmann Machines are Universal Approximators. ICLR (Poster) 2015 - [i11]Guido Montúfar, Keyan Ghazi-Zahedi, Nihat Ay:
Geometry and Determinism of Optimal Stationary Control in Partially Observable Markov Decision Processes. CoRR abs/1503.07206 (2015) - [i10]Guido Montúfar:
Universal Approximation of Markov Kernels by Shallow Stochastic Feedforward Networks. CoRR abs/1503.07211 (2015) - [i9]Guido Montúfar, Johannes Rauh:
Hierarchical Models as Marginals of Hierarchical Models. CoRR abs/1508.03606 (2015) - [i8]Guido Montúfar, Jason Morton:
Dimension of Marginals of Kronecker Product Models. CoRR abs/1511.03570 (2015) - [i7]Keyan Ghazi-Zahedi, Daniel F. B. Haeufle, Guido Montúfar, Syn Schmitt, Nihat Ay:
Evaluating Morphological Computation in Muscle and DC-motor Driven Models of Human Hopping. CoRR abs/1512.00250 (2015) - 2014
- [j6]Guido Montúfar, Johannes Rauh, Nihat Ay:
On the Fisher Metric of Conditional Probability Polytopes. Entropy 16(6): 3207-3233 (2014) - [j5]Guido F. Montúfar, Johannes Rauh:
Scaling of model approximation errors and expected entropy distances. Kybernetika 50(2): 234-245 (2014) - [j4]Guido F. Montúfar:
Universal Approximation Depth and Errors of Narrow Belief Networks with Discrete Units. Neural Comput. 26(7): 1386-1407 (2014) - [c6]Guido Montúfar, Razvan Pascanu, KyungHyun Cho, Yoshua Bengio:
On the Number of Linear Regions of Deep Neural Networks. NIPS 2014: 2924-2932 - [c5]Razvan Pascanu, Guido Montúfar, Yoshua Bengio:
On the number of inference regions of deep feed forward networks with piece-wise linear activations. ICLR (Poster) 2014 - [i6]Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, Yoshua Bengio:
On the Number of Linear Regions of Deep Neural Networks. CoRR abs/1402.1869 (2014) - [i5]Guido Montúfar, Nihat Ay, Keyan Zahedi:
Expressive Power of Conditional Restricted Boltzmann Machines for Sensorimotor Control. CoRR abs/1402.3346 (2014) - [i4]Guido Montúfar, Nihat Ay, Keyan Ghazi-Zahedi:
A Framework for Cheap Universal Approximation in Embodied Systems. CoRR abs/1407.6836 (2014) - [i3]Tyll Krueger, Guido Montúfar, Ruedi Seiler, Rainer Siegmund-Schultze:
Sequential Recurrence-Based Multidimensional Universal Source Coding of Lempel-Ziv Type. CoRR abs/1408.4433 (2014) - 2013
- [j3]Guido Montúfar:
Mixture decompositions of exponential families - using a decomposition of their sample spaces. Kybernetika 49(1): 23-39 (2013) - [j2]Tyll Krüger, Guido Montúfar, Ruedi Seiler, Rainer Siegmund-Schultze:
Universally typical sets for ergodic sources of multidimensional data. Kybernetika 49(6): 868-882 (2013) - [c4]Guido Montúfar, Johannes Rauh, Nihat Ay:
Maximal Information Divergence from Statistical Models Defined by Neural Networks. GSI 2013: 759-766 - [c3]Guido F. Montúfar, Jason Morton:
When Does a Mixture of Products Contain a Product of Mixtures? ICLR (Workshop Poster) 2013 - [c2]Guido Montúfar, Jason Morton:
Discrete Restricted Boltzmann Machines. ICLR 2013 - [i2]Guido F. Montúfar:
Universal Approximation Depth and Errors of Narrow Belief Networks with Discrete Units. CoRR abs/1303.7461 (2013) - 2012
- [b1]Guido Francisco Montúfar Cuartas:
On the expressive power of discrete mixture models, restricted Boltzmann machines, and deep belief networks: a unified mathematical treatment. University of Leipzig, 2012, pp. 1-148 - 2011
- [j1]Guido Montúfar, Nihat Ay:
Refinements of Universal Approximation Results for Deep Belief Networks and Restricted Boltzmann Machines. Neural Comput. 23(5): 1306-1319 (2011) - [c1]Guido Montúfar, Johannes Rauh, Nihat Ay:
Expressive Power and Approximation Errors of Restricted Boltzmann Machines. NIPS 2011: 415-423 - [i1]Tyll Krueger, Guido Montúfar, Ruedi Seiler, Rainer Siegmund-Schultze:
Universally Typical Sets for Ergodic Sources of Multidimensional Data. CoRR abs/1105.0393 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-27 00:44 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint