default search action
Andriy Mnih
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i23]Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, Arnaud Doucet:
Schrödinger Bridge Flow for Unpaired Data Translation. CoRR abs/2409.09347 (2024) - 2023
- [c32]Tomas Geffner, George Papamakarios, Andriy Mnih:
Compositional Score Modeling for Simulation-Based Inference. ICML 2023: 11098-11116 - 2022
- [i22]Tomas Geffner, George Papamakarios, Andriy Mnih:
Score Modeling for Simulation-based Inference. CoRR abs/2209.14249 (2022) - 2021
- [c31]Matthias Bauer, Andriy Mnih:
Generalized Doubly Reparameterized Gradient Estimators. ICML 2021: 738-747 - [c30]Hyunjik Kim, George Papamakarios, Andriy Mnih:
The Lipschitz Constant of Self-Attention. ICML 2021: 5562-5571 - [c29]Zhe Dong, Andriy Mnih, George Tucker:
Coupled Gradient Estimators for Discrete Latent Variables. NeurIPS 2021: 24498-24508 - [i21]Matthias Bauer, Andriy Mnih:
Generalized Doubly Reparameterized Gradient Estimators. CoRR abs/2101.11046 (2021) - [i20]Zhe Dong, Andriy Mnih, George Tucker:
Coupled Gradient Estimators for Discrete Latent Variables. CoRR abs/2106.08056 (2021) - [i19]Wouter Kool, Chris J. Maddison, Andriy Mnih:
Unbiased Gradient Estimation with Balanced Assignments for Mixtures of Experts. CoRR abs/2109.11817 (2021) - 2020
- [j2]Shakir Mohamed, Mihaela Rosca, Michael Figurnov, Andriy Mnih:
Monte Carlo Gradient Estimation in Machine Learning. J. Mach. Learn. Res. 21: 132:1-132:62 (2020) - [c28]Jiaxin Shi, Michalis K. Titsias, Andriy Mnih:
Sparse Orthogonal Variational Inference for Gaussian Processes. AISTATS 2020: 1932-1942 - [c27]Zhe Dong, Andriy Mnih, George Tucker:
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables. NeurIPS 2020 - [i18]Tom Van de Wiele, David Warde-Farley, Andriy Mnih, Volodymyr Mnih:
Q-Learning in enormous action spaces via amortized approximate maximization. CoRR abs/2001.08116 (2020) - [i17]Hyunjik Kim, George Papamakarios, Andriy Mnih:
The Lipschitz Constant of Self-Attention. CoRR abs/2006.04710 (2020) - [i16]Zhe Dong, Andriy Mnih, George Tucker:
DisARM: An Antithetic Gradient Estimator for Binary Latent Variables. CoRR abs/2006.10680 (2020)
2010 – 2019
- 2019
- [c26]Matthias Bauer, Andriy Mnih:
Resampled Priors for Variational Autoencoders. AISTATS 2019: 66-75 - [c25]Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh:
Attentive Neural Processes. ICLR (Poster) 2019 - [i15]Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, S. M. Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh:
Attentive Neural Processes. CoRR abs/1901.05761 (2019) - [i14]Shakir Mohamed, Mihaela Rosca, Michael Figurnov, Andriy Mnih:
Monte Carlo Gradient Estimation in Machine Learning. CoRR abs/1906.10652 (2019) - [i13]Jiaxin Shi, Michalis K. Titsias, Andriy Mnih:
Sparse Orthogonal Variational Inference for Gaussian Processes. CoRR abs/1910.10596 (2019) - 2018
- [c24]Hyunjik Kim, Andriy Mnih:
Disentangling by Factorising. ICML 2018: 2654-2663 - [c23]Mikhail Figurnov, Shakir Mohamed, Andriy Mnih:
Implicit Reparameterization Gradients. NeurIPS 2018: 439-450 - [i12]Hyunjik Kim, Andriy Mnih:
Disentangling by Factorising. CoRR abs/1802.05983 (2018) - [i11]Michael Figurnov, Shakir Mohamed, Andriy Mnih:
Implicit Reparameterization Gradients. CoRR abs/1805.08498 (2018) - [i10]Matthias Bauer, Andriy Mnih:
Resampled Priors for Variational Autoencoders. CoRR abs/1810.11428 (2018) - 2017
- [c22]Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Arnaud Doucet, Andriy Mnih, Yee Whye Teh:
Particle Value Functions. ICLR (Workshop) 2017 - [c21]Chris J. Maddison, Andriy Mnih, Yee Whye Teh:
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. ICLR (Poster) 2017 - [c20]George Tucker, Andriy Mnih, Chris J. Maddison, Jascha Sohl-Dickstein:
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models. ICLR (Workshop) 2017 - [c19]George Tucker, Andriy Mnih, Chris J. Maddison, Dieterich Lawson, Jascha Sohl-Dickstein:
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models. NIPS 2017: 2627-2636 - [c18]Jörg Bornschein, Andriy Mnih, Daniel Zoran, Danilo Jimenez Rezende:
Variational Memory Addressing in Generative Models. NIPS 2017: 3920-3929 - [c17]Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Whye Teh:
Filtering Variational Objectives. NIPS 2017: 6573-6583 - [i9]Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Arnaud Doucet, Andriy Mnih, Yee Whye Teh:
Particle Value Functions. CoRR abs/1703.05820 (2017) - [i8]George Tucker, Andriy Mnih, Chris J. Maddison, Jascha Sohl-Dickstein:
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models. CoRR abs/1703.07370 (2017) - [i7]Chris J. Maddison, Dieterich Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, Yee Whye Teh:
Filtering Variational Objectives. CoRR abs/1705.09279 (2017) - [i6]Jörg Bornschein, Andriy Mnih, Daniel Zoran, Danilo Jimenez Rezende:
Variational Memory Addressing in Generative Models. CoRR abs/1709.07116 (2017) - 2016
- [c16]Andriy Mnih, Danilo Jimenez Rezende:
Variational Inference for Monte Carlo Objectives. ICML 2016: 2188-2196 - [c15]Shixiang Gu, Sergey Levine, Ilya Sutskever, Andriy Mnih:
MuProp: Unbiased Backpropagation for Stochastic Neural Networks. ICLR (Poster) 2016 - [i5]Andriy Mnih, Danilo Jimenez Rezende:
Variational inference for Monte Carlo objectives. CoRR abs/1602.06725 (2016) - [i4]Chris J. Maddison, Andriy Mnih, Yee Whye Teh:
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. CoRR abs/1611.00712 (2016) - 2014
- [c14]Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, Daan Wierstra:
Deep AutoRegressive Networks. ICML 2014: 1242-1250 - [c13]Andriy Mnih, Karol Gregor:
Neural Variational Inference and Learning in Belief Networks. ICML 2014: 1791-1799 - [i3]Andriy Mnih, Karol Gregor:
Neural Variational Inference and Learning in Belief Networks. CoRR abs/1402.0030 (2014) - 2013
- [c12]Andriy Mnih, Koray Kavukcuoglu:
Learning word embeddings efficiently with noise-contrastive estimation. NIPS 2013: 2265-2273 - [i2]Karol Gregor, Andriy Mnih, Daan Wierstra:
Deep AutoRegressive Networks. CoRR abs/1310.8499 (2013) - 2012
- [c11]Andriy Mnih, Yee Whye Teh:
A fast and simple algorithm for training neural probabilistic language models. ICML 2012 - [c10]Andriy Mnih, Yee Whye Teh:
Learning Label Trees for Probabilistic Modelling of Implicit Feedback. NIPS 2012: 2825-2833 - [c9]Andriy Mnih:
Taxonomy-Informed Latent Factor Models for Implicit Feedback. KDD Cup 2012: 169-181 - 2011
- [i1]Andriy Mnih, Yee Whye Teh:
Learning Item Trees for Probabilistic Modelling of Implicit Feedback. CoRR abs/1109.5894 (2011) - 2010
- [b1]Andriy Mnih:
Learning Distributed Representations for Statistical Language Modelling and Collaborative Filtering. University of Toronto, Canada, 2010
2000 – 2009
- 2009
- [j1]Andriy Mnih, Zhang Yuecheng, Geoffrey E. Hinton:
Improving a statistical language model through non-linear prediction. Neurocomputing 72(7-9): 1414-1418 (2009) - 2008
- [c8]Zhang Yuecheng, Andriy Mnih, Geoffrey E. Hinton:
Improving a statistical language model by modulating the effects of context words. ESANN 2008: 493-498 - [c7]Ruslan Salakhutdinov, Andriy Mnih:
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. ICML 2008: 880-887 - [c6]Andriy Mnih, Geoffrey E. Hinton:
A Scalable Hierarchical Distributed Language Model. NIPS 2008: 1081-1088 - 2007
- [c5]Andriy Mnih, Geoffrey E. Hinton:
Three new graphical models for statistical language modelling. ICML 2007: 641-648 - [c4]Ruslan Salakhutdinov, Andriy Mnih, Geoffrey E. Hinton:
Restricted Boltzmann machines for collaborative filtering. ICML 2007: 791-798 - [c3]Ruslan Salakhutdinov, Andriy Mnih:
Probabilistic Matrix Factorization. NIPS 2007: 1257-1264 - [c2]James Cook, Ilya Sutskever, Andriy Mnih, Geoffrey E. Hinton:
Visualizing Similarity Data with a Mixture of Maps. AISTATS 2007: 67-74 - 2003
- [c1]Geoffrey E. Hinton, Max Welling, Andriy Mnih:
Wormholes Improve Contrastive Divergence. NIPS 2003: 417-424
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-15 00:26 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint