default search action
Hsinyu Tsai
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i4]Zhaoxian Wu, Quan Xiao, Tayfun Gokmen, Hsinyu Tsai, Kaoutar El Maghraoui, Tianyi Chen:
Pipeline Gradient-based Model Training on Analog In-memory Accelerators. CoRR abs/2410.15155 (2024) - 2023
- [j6]Stefano Ambrogio, Pritish Narayanan, Atsuya Okazaki, Andrea Fasoli, Charles Mackin, Kohji Hosokawa, Akiyo Nomura, Takeo Yasuda, An Chen, Alexander M. Friz, Masatoshi Ishii, Jose Luquin, Yasuteru Kohda, Nicole Saulnier, Kevin Brew, Samuel Choi, Injo Ok, Timothy Philip, Victor Chan, Mary Claire Silvestre, Ishtiaq Ahsan, Vijay Narayanan, Hsinyu Tsai, Geoffrey W. Burr:
An analog-AI chip for energy-efficient speech recognition and transcription. Nat. 620(7975): 768-775 (2023) - [j5]Shubham Jain, Hsinyu Tsai, Ching-Tzu Chen, Ramachandran Muralidhar, Irem Boybat, Martin M. Frank, Stanislaw Wozniak, Milos Stanisavljevic, Praneet Adusumilli, Pritish Narayanan, Kohji Hosokawa, Masatoshi Ishii, Arvind Kumar, Vijay Narayanan, Geoffrey W. Burr:
A Heterogeneous and Programmable Compute-In-Memory Accelerator Architecture for Analog-AI Using Dense 2-D Mesh. IEEE Trans. Very Large Scale Integr. Syst. 31(1): 114-127 (2023) - [c12]Hadjer Benmeziane, Corey Lammie, Irem Boybat, Malte J. Rasch, Manuel Le Gallo, Hsinyu Tsai, Ramachandran Muralidhar, Smaïl Niar, Hamza Ouarnoughi, Vijay Narayanan, Abu Sebastian, Kaoutar El Maghraoui:
AnalogNAS: A Neural Network Design Framework for Accurate Inference with Analog In-Memory Computing. EDGE 2023: 233-244 - [c11]Martin M. Frank, Ning Li, Malte J. Rasch, Shubham Jain, Ching-Tzu Chen, Ramachandran Muralidhar, Jin-Ping Han, Vijay Narayanan, Timothy Philip, Kevin Brew, Andrew Simon, Iqbal Saraf, Nicole Saulnier, Irem Boybat, Stanislaw Wozniak, Abu Sebastian, Pritish Narayanan, Charles Mackin, An Chen, Hsinyu Tsai, Geoffrey W. Burr:
Impact of Phase-Change Memory Drift on Energy Efficiency and Accuracy of Analog Compute-in-Memory Deep Learning Inference (Invited). IRPS 2023: 1-10 - [c10]Hsinyu Tsai, Pritish Narayanan, Shubham Jain, Stefano Ambrogio, Kohji Hosokawa, Masatoshi Ishii, Charles Mackin, Ching-Tzu Chen, Atsuya Okazaki, Akiyo Nomura, Irem Boybat, Ramachandran Muralidhar, Martin M. Frank, Takeo Yasuda, Alexander M. Friz, Yasuteru Kohda, An Chen, Andrea Fasoli, Malte J. Rasch, Stanislaw Wozniak, Jose Luquin, Vijay Narayanan, Geoffrey W. Burr:
Architectures and Circuits for Analog-memory-based Hardware Accelerators for Deep Neural Networks (Invited). ISCAS 2023: 1-5 - [c9]Geoffrey W. Burr, Pritish Narayanan, Stefano Ambrogio, Atsuya Okazaki, Hsinyu Tsai, Kohji Hosokawa, Charles Mackin, Akiyo Nomura, Takeo Yasuda, J. Demarest, Kevin Brew, Victor Chan, Samuel Choi, T. Gordon, T. M. Levin, Alexander M. Friz, Masatoshi Ishii, Yasuteru Kohda, An Chen, Andrea Fasoli, Jose Luquin, Nicole Saulnier, S. Teehan, Ishtiaq Ahsan, Vijay Narayanan:
Phase Change Memory-based Hardware Accelerators for Deep Neural Networks (invited). VLSI Technology and Circuits 2023: 1-2 - [i3]Malte J. Rasch, Charles Mackin, Manuel Le Gallo, An Chen, Andrea Fasoli, Frédéric Odermatt, Ning Li, S. R. Nandakumar, Pritish Narayanan, Hsinyu Tsai, Geoffrey W. Burr, Abu Sebastian, Vijay Narayanan:
Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. CoRR abs/2302.08469 (2023) - [i2]Hadjer Benmeziane, Corey Lammie, Irem Boybat, Malte J. Rasch, Manuel Le Gallo, Hsinyu Tsai, Ramachandran Muralidhar, Smaïl Niar, Hamza Ouarnoughi, Vijay Narayanan, Abu Sebastian, Kaoutar El Maghraoui:
AnalogNAS: A Neural Network Design Framework for Accurate Inference with Analog In-Memory Computing. CoRR abs/2305.10459 (2023) - [i1]Manuel Le Gallo, Corey Lammie, Julian Büchel, Fabio Carta, Omobayode Fagbohungbe, Charles Mackin, Hsinyu Tsai, Vijay Narayanan, Abu Sebastian, Kaoutar El Maghraoui, Malte J. Rasch:
Using the IBM Analog In-Memory Hardware Acceleration Kit for Neural Network Training and Inference. CoRR abs/2307.09357 (2023) - 2022
- [c8]Atsuya Okazaki, Pritish Narayanan, Stefano Ambrogio, Kohji Hosokawa, Hsinyu Tsai, Akiyo Nomura, Takeo Yasuda, Charles Mackin, Alexander M. Friz, Masatoshi Ishii, Yasuteru Kohda, Katie Spoon, An Chen, Andrea Fasoli, Malte J. Rasch, Geoffrey W. Burr:
Analog-memory-based 14nm Hardware Accelerator for Dense Deep Neural Networks including Transformers. ISCAS 2022: 3319-3323 - 2021
- [j4]Katie Spoon, Hsinyu Tsai, An Chen, Malte J. Rasch, Stefano Ambrogio, Charles Mackin, Andrea Fasoli, Alexander M. Friz, Pritish Narayanan, Milos Stanisavljevic, Geoffrey W. Burr:
Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices. Frontiers Comput. Neurosci. 15: 675741 (2021) - [c7]Robert L. Bruce, Syed Ghazi Sarwat, Irem Boybat, Cheng-Wei Cheng, Wanki Kim, S. R. Nandakumar, Charles Mackin, Timothy Philip, Zuoguang Liu, Kevin Brew, Nanbo Gong, Injo Ok, Praneet Adusumilli, Katie Spoon, Stefano Ambrogio, Benedikt Kersting, Thomas Bohnstingl, Manuel Le Gallo, Andrew Simon, Ning Li, Iqbal Saraf, Jin-Ping Han, Lynne M. Gignac, John M. Papalia, Tenko Yamashita, Nicole Saulnier, Geoffrey W. Burr, Hsinyu Tsai, Abu Sebastian, Vijay Narayanan, Matthew BrightSky:
Mushroom-Type phase change memory with projection liner: An array-level demonstration of conductance drift and noise mitigation. IRPS 2021: 1-6 - [c6]Kohji Hosokawa, Pritish Narayanan, Stefano Ambrogio, Hsinyu Tsai, Charles Mackin, Andrea Fasoli, Alexander M. Friz, An Chen, Jose Luquin, Katherine Spoon, Geoffrey W. Burr, Scott C. Lewis:
Circuit Techniques for Efficient Acceleration of Deep Neural Network Inference with Analog-AI (Invited). ISCAS 2021: 1-5 - 2020
- [c5]Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Charles Mackin, Katherine Spoon, An Chen, Andrea Fasoli, Alexander M. Friz, Geoffrey W. Burr:
Accelerating Deep Neural Networks with Analog Memory Devices. AICAS 2020: 149-152 - [c4]Charles Mackin, Pritish Narayanan, Stefano Ambrogio, Hsinyu Tsai, Katie Spoon, Andrea Fasoli, An Chen, Alexander M. Friz, Robert M. Shelby, Geoffrey W. Burr:
Neuromorphic Computing with Phase Change, Device Reliability, and Variability Challenges. IRPS 2020: 1-10 - [c3]Andrea Fasoli, Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Charles Mackin, Katherine Spoon, Alexander M. Friz, An Chen, Geoffrey W. Burr:
Optimization of Analog Accelerators for Deep Neural Networks Inference. ISCAS 2020: 1-5
2010 – 2019
- 2019
- [j3]Massimo Giordano, Giorgio Cristiano, Koji Ishibashi, Stefano Ambrogio, Hsinyu Tsai, Geoffrey W. Burr, Pritish Narayanan:
Analog-to-Digital Conversion With Reconfigurable Function Mapping for Neural Networks Activation Function Acceleration. IEEE J. Emerg. Sel. Topics Circuits Syst. 9(2): 367-376 (2019) - [j2]Hung-Yang Chang, Pritish Narayanan, Scott C. Lewis, Nathan C. P. Farinha, Kohji Hosokawa, Charles Mackin, Hsinyu Tsai, Stefano Ambrogio, An Chen, Geoffrey W. Burr:
AI hardware acceleration with analog memory: Microarchitectures for low energy at high speed. IBM J. Res. Dev. 63(6): 8:1-8:14 (2019) - 2018
- [j1]Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M. Shelby, Irem Boybat, Carmelo di Nolfo, Severin Sidler, Massimo Giordano, Martina Bodini, Nathan C. P. Farinha, Benjamin Killeen, Christina Cheng, Yassine Jaoudi, Geoffrey W. Burr:
Equivalent-accuracy accelerated neural-network training using analogue memory. Nat. 558(7708): 60-67 (2018) - 2017
- [c2]Irem Boybat, Carmelo di Nolfo, Stefano Ambrogio, Martina Bodini, Nathan C. P. Farinha, Robert M. Shelby, Pritish Narayanan, Severin Sidler, Hsinyu Tsai, Yusuf Leblebici, Geoffrey W. Burr:
Improved Deep Neural Network Hardware-Accelerators Based on Non-Volatile-Memory: The Local Gains Technique. ICRC 2017: 1-8 - [c1]Geoffrey W. Burr, Pritish Narayanan, Robert M. Shelby, Stefano Ambrogio, Hsinyu Tsai, Scott L. Lewis, Kohji Hosokawa:
Neuromorphic devices and architectures for next-generation cognitive computing. ISCAS 2017: 1-4
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 12:47 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint