default search action
Ioannis Tsamardinos
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j38]George Paterakis, Stefanos Fafalios, Paulos Charonyktakis, Vassilis Christophides, Ioannis Tsamardinos:
Do We Really Need Imputation in AutoML Predictive Modeling? ACM Trans. Knowl. Discov. Data 18(6): 147:1-147:64 (2024) - [j37]Konstantina Biza, Ioannis Tsamardinos, Sofia Triantafillou:
Out-of-Sample Tuning for Causal Discovery. IEEE Trans. Neural Networks Learn. Syst. 35(4): 4963-4973 (2024) - [c55]Nikolaos Myrtakis, Ioannis Tsamardinos, Vassilis Christophides:
AutoML for Explainable Anomaly Detection (XAD). Tannen's Festschrift 2024: 8:1-8:23 - [i16]Konstantina Biza, Antonios Ntroumpogiannis, Sofia Triantafillou, Ioannis Tsamardinos:
Towards Automated Causal Discovery: a case study on 5G telecommunication data. CoRR abs/2402.14481 (2024) - [i15]Konstantinos Paraschakis, Andrea Castellani, Giorgos Borboudakis, Ioannis Tsamardinos:
Confidence Interval Estimation of Predictive Performance in the Context of AutoML. CoRR abs/2406.08099 (2024) - 2023
- [j36]Kleanthi Lakiotaki, Zacharias Papadovasilakis, Vincenzo Lagani, Stefanos Fafalios, Paulos Charonyktakis, Michail Tsagris, Ioannis Tsamardinos:
Automated machine learning for genome wide association studies. Bioinform. 39(9) (2023) - [j35]Ioulia Karagiannaki, Krystallia Gourlia, Vincenzo Lagani, Yannis Pantazis, Ioannis Tsamardinos:
Learning biologically-interpretable latent representations for gene expression data. Mach. Learn. 112(11): 4257-4287 (2023) - [j34]Antonios Ntroumpogiannis, Michail Giannoulis, Nikolaos Myrtakis, Vassilis Christophides, Eric Simon, Ioannis Tsamardinos:
A meta-level analysis of online anomaly detectors. VLDB J. 32(4): 845-886 (2023) - [i14]Giorgos Borboudakis, Paulos Charonyktakis, Konstantinos Paraschakis, Ioannis Tsamardinos:
A Meta-Level Learning Algorithm for Sequential Hyper-Parameter Space Reduction in AutoML. CoRR abs/2312.06305 (2023) - 2022
- [j33]Vasilios Plakandaras, Periklis Gogas, Theophilos Papadimitriou, Ioannis Tsamardinos:
Credit Card Fraud Detection with Automated Machine Learning Systems. Appl. Artif. Intell. 36(1) (2022) - [j32]Ioannis Tsamardinos:
Don't lose samples to estimation. Patterns 3(12): 100612 (2022) - [j31]Michail Tsagris, Zacharias Papadovasilakis, Kleanthi Lakiotaki, Ioannis Tsamardinos:
The $\gamma$γ-OMP Algorithm for Feature Selection With Application to Gene Expression Data. IEEE ACM Trans. Comput. Biol. Bioinform. 19(2): 1214-1224 (2022) - [i13]Antonios Ntroumpogiannis, Michail Giannoulis, Nikolaos Myrtakis, Vassilis Christophides, Eric Simon, Ioannis Tsamardinos:
A Meta-level Analysis of Online Anomaly Detectors. CoRR abs/2209.05899 (2022) - 2021
- [j30]Giorgos Borboudakis, Ioannis Tsamardinos:
Extending greedy feature selection algorithms to multiple solutions. Data Min. Knowl. Discov. 35(4): 1393-1434 (2021) - [c54]Maria Papadogiorgaki, Maria Venianaki, Paulos Charonyktakis, Marios Antonakakis, Ioannis Tsamardinos, Michalis E. Zervakis, Vangelis Sakkalis:
Heart Rate Classification Using ECG Signal Processing and Machine Learning Methods. BIBE 2021: 1-6 - [c53]Nikolaos Myrtakis, Ioannis Tsamardinos, Vassilis Christophides:
PROTEUS: Predictive Explanation of Anomalies. ICDE 2021: 1967-1972 - [i12]Nikolaos Myrtakis, Ioannis Tsamardinos, Vassilis Christophides:
On Predictive Explanation of Data Anomalies. CoRR abs/2110.09467 (2021) - 2020
- [c52]Yannis Pantazis, Christos Tselas, Kleanthi Lakiotaki, Vincenzo Lagani, Ioannis Tsamardinos:
Latent Feature Representations for Human Gene Expression Data Improve Phenotypic Predictions. BIBM 2020: 2505-2512 - [c51]Ioulia Karagiannaki, Yannis Pantazis, Ekaterini Chatzaki, Ioannis Tsamardinos:
Pathway Activity Score Learning for Dimensionality Reduction of Gene Expression Data. DS 2020: 246-261 - [c50]Iordanis Xanthopoulos, Ioannis Tsamardinos, Vassilis Christophides, Eric Simon, Alejandro Salinger:
Putting the Human Back in the AutoML Loop. EDBT/ICDT Workshops 2020 - [c49]Konstantina Biza, Ioannis Tsamardinos, Sofia Triantafillou:
Tuning Causal Discovery Algorithms. PGM 2020: 17-28 - [i11]Michail Tsagris, Zacharias Papadovasilakis, Kleanthi Lakiotaki, Ioannis Tsamardinos:
A generalised OMP algorithm for feature selection with application to gene expression data. CoRR abs/2004.00281 (2020) - [i10]Anastasios Tsourtis, Yannis Pantazis, Ioannis Tsamardinos:
Inference of Stochastic Dynamical Systems from Cross-Sectional Population Data. CoRR abs/2012.05055 (2020)
2010 – 2019
- 2019
- [j29]Yannis Pantazis, Ioannis Tsamardinos:
A unified approach for sparse dynamical system inference from temporal measurements. Bioinform. 35(18): 3387-3396 (2019) - [j28]Giorgos Borboudakis, Ioannis Tsamardinos:
Forward-Backward Selection with Early Dropping. J. Mach. Learn. Res. 20: 8:1-8:39 (2019) - [j27]Ioannis Tsamardinos, Giorgos Borboudakis, Pavlos Katsogridakis, Polyvios Pratikakis, Vassilis Christophides:
A greedy feature selection algorithm for Big Data of high dimensionality. Mach. Learn. 108(2): 149-202 (2019) - 2018
- [j26]Kleanthi Lakiotaki, Nikolaos Vorniotakis, Michail Tsagris, Georgios Georgakopoulos, Ioannis Tsamardinos:
BioDataome: a collection of uniformly preprocessed and automatically annotated datasets for data-driven biology. Database J. Biol. Databases Curation 2018: bay011 (2018) - [j25]Michail Tsagris, Vincenzo Lagani, Ioannis Tsamardinos:
Feature selection for high-dimensional temporal data. BMC Bioinform. 19(1): 17:1-17:14 (2018) - [j24]Konstantinos Tsirlis, Vincenzo Lagani, Sofia Triantafillou, Ioannis Tsamardinos:
On scoring Maximal Ancestral Graphs with the Max-Min Hill Climbing algorithm. Int. J. Approx. Reason. 102: 74-85 (2018) - [j23]Michail Tsagris, Giorgos Borboudakis, Vincenzo Lagani, Ioannis Tsamardinos:
Constraint-based causal discovery with mixed data. Int. J. Data Sci. Anal. 6(1): 19-30 (2018) - [j22]Michail Tsagris, Giorgos Borboudakis, Vincenzo Lagani, Ioannis Tsamardinos:
Correction to: Constraint-based causal discovery with mixed data. Int. J. Data Sci. Anal. 6(1): 31 (2018) - [j21]Ioannis Tsamardinos, Elissavet Greasidou, Giorgos Borboudakis:
Bootstrapping the out-of-sample predictions for efficient and accurate cross-validation. Mach. Learn. 107(12): 1895-1922 (2018) - [c48]Marios Adamou, Grigoris Antoniou, Elissavet Greasidou, Vincenzo Lagani, Paulos Charonyktakis, Ioannis Tsamardinos:
Mining Free-Text Medical Notes for Suicide Risk Assessment. SETN 2018: 47:1-47:8 - [i9]Michail Tsagris, Ioannis Tsamardinos:
Feature selection with the R package MXM. F1000Research 7: 1505 (2018) - 2017
- [j20]Giorgos Papoutsoglou, Giorgos Athineou, Vincenzo Lagani, Iordanis Xanthopoulos, Angelika Schmidt, Szabolcs Elias, Jesper Tegnér, Ioannis Tsamardinos:
SCENERY: a web application for (causal) network reconstruction from cytometry data. Nucleic Acids Res. 45(Webserver-Issue): W270-W275 (2017) - [i8]Giorgos Borboudakis, Ioannis Tsamardinos:
Forward-Backward Selection with Early Dropping. CoRR abs/1705.10770 (2017) - [i7]Ioannis Tsamardinos, Giorgos Borboudakis, Pavlos Katsogridakis, Polyvios Pratikakis, Vassilis Christophides:
Massively-Parallel Feature Selection for Big Data. CoRR abs/1708.07178 (2017) - [i6]Ioannis Tsamardinos, Elissavet Greasidou, Michalis Tsagris, Giorgos Borboudakis:
Bootstrapping the Out-of-sample Predictions for Efficient and Accurate Cross-Validation. CoRR abs/1708.07180 (2017) - 2016
- [j19]Vincenzo Lagani, Argyro D. Karozou, David Gomez-Cabrero, Gilad Silberberg, Ioannis Tsamardinos:
Erratum to: A comparative evaluation of data-merging and meta-analysis methods for reconstructing gene-gene interactions. BMC Bioinform. 17: 290 (2016) - [j18]Vincenzo Lagani, Argyro D. Karozou, David Gomez-Cabrero, Gilad Silberberg, Ioannis Tsamardinos:
A comparative evaluation of data-merging and meta-analysis methods for reconstructing gene-gene interactions. BMC Bioinform. 17(S-5): S194 (2016) - [j17]Paulos Charonyktakis, Maria Plakia, Ioannis Tsamardinos, Maria Papadopouli:
On User-Centric Modular QoE Prediction for VoIP Based on Machine-Learning Algorithms. IEEE Trans. Mob. Comput. 15(6): 1443-1456 (2016) - [c47]Giorgos Borboudakis, Ioannis Tsamardinos:
Towards Robust and Versatile Causal Discovery for Business Applications. KDD 2016: 1435-1444 - [c46]Giorgos Athineou, Giorgos Papoutsoglou, Sofia Triantafillou, Ioannis Basdekis, Vincenzo Lagani, Ioannis Tsamardinos:
SCENERY: A Web-Based Application for Network Reconstruction and Visualization of Cytometry Data. PACBB 2016: 203-211 - [c45]Anna Roumpelaki, Giorgos Borboudakis, Sofia Triantafillou, Ioannis Tsamardinos:
Marginal Causal Consistency in Constraint-based Causal Learning. CFA@UAI 2016: 39-47 - [c44]Sofia Triantafillou, Ioannis Tsamardinos:
Score-based vs Constraint-based Causal Learning in the Presence of Confounders. CFA@UAI 2016: 59-67 - 2015
- [j16]Ioannis Tsamardinos, Amin Rakhshani, Vincenzo Lagani:
Performance-Estimation Properties of Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter Optimization. Int. J. Artif. Intell. Tools 24(5): 1540023:1-1540023:29 (2015) - [j15]Sofia Triantafillou, Ioannis Tsamardinos:
Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16: 2147-2205 (2015) - [c43]Christina Papagiannopoulou, Grigorios Tsoumakas, Ioannis Tsamardinos:
Discovering and Exploiting Deterministic Label Relationships in Multi-Label Learning. KDD 2015: 915-924 - [c42]Grace T. Huang, Ioannis Tsamardinos, Vineet K. Raghu, Naftali Kaminski, Panayiotis V. Benos:
T-ReCS: Stable Selection of Dynamically Formed Groups of Features with Application to Prediction of Clinical Outcomes. Pacific Symposium on Biocomputing 2015: 431-442 - [c41]Giorgos Borboudakis, Ioannis Tsamardinos:
Bayesian Network Learning with Discrete Case-Control Data. UAI 2015: 151-160 - 2014
- [j14]Nestoras Karathanasis, Ioannis Tsamardinos, Panayiota Poirazi:
Don't use a cannon to kill the ... miRNA mosquito. Bioinform. 30(7): 1047-1048 (2014) - [c40]Sofia Triantafilou, Ioannis Tsamardinos, Anna Roumpelaki:
Learning Neighborhoods of High Confidence in Constraint-Based Causal Discovery. Probabilistic Graphical Models 2014: 487-502 - [c39]Ioannis Tsamardinos, Amin Rakhshani, Vincenzo Lagani:
Performance-Estimation Properties of Cross-Validation-Based Protocols with Simultaneous Hyper-Parameter Optimization. SETN 2014: 1-14 - [i5]Sofia Triantafilou, Ioannis Tsamardinos:
Constraint-based Causal Discovery from Multiple Interventions over Overlapping Variable Sets. CoRR abs/1403.2150 (2014) - [i4]Christina Papagiannopoulou, Grigorios Tsoumakas, Ioannis Tsamardinos:
Discovering and Exploiting Entailment Relationships in Multi-Label Learning. CoRR abs/1404.4038 (2014) - [i3]Giorgos Borboudakis, Ioannis Tsamardinos:
Scoring and Searching over Bayesian Networks with Causal and Associative Priors. CoRR abs/1408.2057 (2014) - 2013
- [c38]Nestoras Karathanasis, Ioannis Tsamardinos, Panayiota Poirazi:
A bioinformatics approach for investigating the determinants of Drosha processing. BIBE 2013: 1-4 - [c37]Giorgos Borboudakis, Ioannis Tsamardinos:
Scoring and Searching over Bayesian Networks with Causal and Associative Priors. UAI 2013 - 2012
- [j13]Laura E. Brown, Ioannis Tsamardinos, Douglas P. Hardin:
To feature space and back: Identifying top-weighted features in polynomial Support Vector Machine models. Intell. Data Anal. 16(4): 551-579 (2012) - [j12]Ioannis Tsamardinos, Sofia Triantafilou, Vincenzo Lagani:
Towards Integrative Causal Analysis of Heterogeneous Data Sets and Studies. J. Mach. Learn. Res. 13: 1097-1157 (2012) - [c36]Nestoras Karathanasis, Ioannis Tsamardinos, Angelos P. Armen, Panayiota Poirazi:
SVM-based miRNA: MiRNA∗ duplex prediction. BIBE 2012: 181-186 - [c35]Giorgos Borboudakis, Ioannis Tsamardinos:
Incorporating Causal Prior Knowledge as Path-Constraints in Bayesian Networks and Maximal Ancestral Graphs. ICML 2012 - [c34]Sophia Kleisarchaki, Dimitris Kotzinos, Ioannis Tsamardinos, Vassilis Christophides:
A Methodological Framework for Statistical Analysis of Social Text Streams. ISIP 2012: 101-110 - [c33]Vincenzo Lagani, Ioannis Tsamardinos, Sofia Triantafilou:
Learning from Mixture of Experimental Data: A Constraint-Based Approach. SETN 2012: 124-131 - [i2]Giorgos Borboudakis, Ioannis Tsamardinos:
Scoring Bayesian Networks with Informative, Causal and Associative Priors. CoRR abs/1209.6561 (2012) - 2011
- [c32]Chrysi Filippaki, Grigoris Antoniou, Ioannis Tsamardinos:
Using Constraint Optimization for Conflict Resolution and Detail Control in Activity Recognition. AmI 2011: 51-60 - [c31]Angelos P. Armen, Ioannis Tsamardinos:
A unified approach to estimation and control of the False Discovery Rate in Bayesian network skeleton identification. ESANN 2011 - [c30]Giorgos Borboudakis, Sofia Triantafilou, Vincenzo Lagani, Ioannis Tsamardinos:
A constraint-based approach to incorporate prior knowledge in causal models. ESANN 2011 - [c29]Eleni G. Christodoulou, O. D. Røe, Amos Folarin, Ioannis Tsamardinos:
Information-Preserving Techniques Improve Chemosensitivity Prediction of Tumours Based on Expression Profiles. EANN/AIAI (1) 2011: 453-462 - [c28]Lefteris Koumakis, Franco Chiarugi, Vincenzo Lagani, Angelina Kouroubali, Ioannis Tsamardinos:
Risk Assessment Models for Diabetes Complications: A Survey of Available Online Tools. MobiHealth 2011: 46-53 - 2010
- [j11]Vincenzo Lagani, Ioannis Tsamardinos:
Structure-based variable selection for survival data. Bioinform. 26(15): 1887-1894 (2010) - [j10]Constantin F. Aliferis, Alexander R. Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos:
Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation. J. Mach. Learn. Res. 11: 171-234 (2010) - [j9]Constantin F. Aliferis, Alexander R. Statnikov, Ioannis Tsamardinos, Subramani Mani, Xenofon D. Koutsoukos:
Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions. J. Mach. Learn. Res. 11: 235-284 (2010) - [c27]Ioannis Tsamardinos, Giorgos Borboudakis:
Permutation Testing Improves Bayesian Network Learning. ECML/PKDD (3) 2010: 322-337 - [c26]Sofia Triantafilou, Ioannis Tsamardinos, Ioannis G. Tollis:
Learning Causal Structure from Overlapping Variable Sets. AISTATS 2010: 860-867
2000 – 2009
- 2009
- [c25]Ioannis Tsamardinos, Asimakis P. Mariglis:
Multi-Source Causal Analysis: Learning Bayesian Networks from Multiple Datasets. AIAI 2009: 479-490 - 2008
- [c24]Ioannis Tsamardinos, Laura E. Brown:
Bounding the False Discovery Rate in Local Bayesian Network Learning. AAAI 2008: 1100-1105 - [c23]Laura E. Brown, Ioannis Tsamardinos:
A Strategy for Making Predictions Under Manipulation. WCCI Causation and Prediction Challenge 2008: 35-52 - 2007
- [i1]Ioannis Tsamardinos:
Causal Data Mining in Bioinformatics. ERCIM News 2007(69) (2007) - 2006
- [j8]Ioannis Tsamardinos, Laura E. Brown, Constantin F. Aliferis:
The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65(1): 31-78 (2006) - [c22]Ioannis Tsamardinos, Alexander R. Statnikov, Laura E. Brown, Constantin F. Aliferis:
Generating Realistic Large Bayesian Networks by Tiling. FLAIRS 2006: 592-597 - 2005
- [j7]Alexander R. Statnikov, Constantin F. Aliferis, Ioannis Tsamardinos, Douglas P. Hardin, Shawn Levy:
A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinform. 21(5): 631-643 (2005) - [j6]Alexander R. Statnikov, Ioannis Tsamardinos, Yerbolat Dosbayev, Constantin F. Aliferis:
GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int. J. Medical Informatics 74(7-8): 491-503 (2005) - [j5]Yindalon Aphinyanaphongs, Ioannis Tsamardinos, Alexander R. Statnikov, Douglas P. Hardin, Constantin F. Aliferis:
Research Paper: Text Categorization Models for High-Quality Article Retrieval in Internal Medicine. J. Am. Medical Informatics Assoc. 12(2): 207-216 (2005) - [c21]Laura E. Brown, Ioannis Tsamardinos, Constantin F. Aliferis:
A Comparison of Novel and State-of-the-Art Polynomial Bayesian Network Learning Algorithms. AAAI 2005: 739-745 - [c20]Alexander R. Statnikov, Ioannis Tsamardinos, Constantin F. Aliferis:
Using the GEMS System for Cancer Diagnosis and Biomarker Discovery from Microarray Gene Expression Data. AAAI 2005: 1710-1711 - [c19]Lawrence D. Fu, Ioannis Tsamardinos:
A Comparison of Bayesian Network Learning Algorithms from Continuous Data. AMIA 2005 - [c18]Alexander R. Statnikov, Ioannis Tsamardinos, Constantin F. Aliferis:
Using the GEMS System for Supervised Analysis of Cancer Microarray Gene Expression Data. AMIA 2005 - 2004
- [c17]Douglas P. Hardin, Ioannis Tsamardinos, Constantin F. Aliferis:
A theoretical characterization of linear SVM-based feature selection. ICML 2004 - [c16]Laura E. Brown, Ioannis Tsamardinos, Constantin F. Aliferis:
A Novel Algorithm for Scalable and Accurate Bayesian Network Learning. MedInfo 2004: 711-715 - [c15]Alexander R. Statnikov, Constantin F. Aliferis, Ioannis Tsamardinos:
Methods for Multi-Category Cancer Diagnosis from Gene Expression Data: A Comprehensive Evaluation to Inform Decision Support System Development. MedInfo 2004: 813-817 - 2003
- [j4]Ioannis Tsamardinos, Martha E. Pollack:
Efficient solution techniques for disjunctive temporal reasoning problems. Artif. Intell. 151(1-2): 43-89 (2003) - [j3]Ioannis Tsamardinos, Thierry Vidal, Martha E. Pollack:
CTP: A New Constraint-Based Formalism for Conditional, Temporal Planning. Constraints An Int. J. 8(4): 365-388 (2003) - [j2]Martha E. Pollack, Laura E. Brown, Dirk Colbry, Colleen E. McCarthy, Cheryl Orosz, Bart Peintner, Sailesh Ramakrishnan, Ioannis Tsamardinos:
Autominder: an intelligent cognitive orthotic system for people with memory impairment. Robotics Auton. Syst. 44(3-4): 273-282 (2003) - [c14]Ioannis Tsamardinos, Constantin F. Aliferis:
Towards Principled Feature Selection: Relevancy, Filters and Wrappers. AISTATS 2003: 300-307 - [c13]Constantin F. Aliferis, Ioannis Tsamardinos, Alexander R. Statnikov:
HITON: A Novel Markov Blanket Algorithm for Optimal Variable Selection. AMIA 2003 - [c12]Constantin F. Aliferis, Ioannis Tsamardinos, Pierre P. Massion, Alexander R. Statnikov, Nafeh Fananapazir, Douglas P. Hardin:
Machine Learning Models for Classification of Lung Cancer and Selection of Genomic Markers Using Array Gene Expression Data. FLAIRS 2003: 67-71 - [c11]Ioannis Tsamardinos, Constantin F. Aliferis, Alexander R. Statnikov:
Algorithms for Large Scale Markov Blanket Discovery. FLAIRS 2003: 376-381 - [c10]Lewis J. Frey, Douglas H. Fisher, Ioannis Tsamardinos, Constantin F. Aliferis, Alexander R. Statnikov:
Identifying Markov Blankets with Decision Tree Induction. ICDM 2003: 59-66 - [c9]Ioannis Tsamardinos, Constantin F. Aliferis, Alexander R. Statnikov:
Time and sample efficient discovery of Markov blankets and direct causal relations. KDD 2003: 673-678 - [c8]Constantin F. Aliferis, Ioannis Tsamardinos, Pierre P. Massion, Alexander R. Statnikov, Douglas P. Hardin:
Why Classification Models Using Array Gene Expression Data Perform So Well: A Preliminary Investigation of Explanatory Factors. METMBS 2003: 47-53 - [c7]Constantin F. Aliferis, Ioannis Tsamardinos, Alexander R. Statnikov, Laura E. Brown:
Causal Explorer: A Causal Probabilistic Network Learning Toolkit for Biomedical Discovery. METMBS 2003: 371-376 - 2002
- [c6]Alan Berfield, Panos K. Chrysanthis, Ioannis Tsamardinos, Martha E. Pollack, Sujata Banerjee:
A Scheme for Integrating e-Services in Establishing Virtual Enterprises. RIDE 2002: 134-142 - [c5]Ioannis Tsamardinos:
A Probabilistic Approach to Robust Execution of Temporal Plans with Uncertainty. SETN 2002: 97-108 - 2001
- [c4]Martha E. Pollack, Colleen E. McCarthy, Sailesh Ramakrishnan, Ioannis Tsamardinos:
Execution-Time Plan Management for a Cognitive Orthotic System. Advances in Plan-Based Control of Robotic Agents 2001: 179-192 - 2000
- [c3]Ioannis Tsamardinos, Martha E. Pollack, John F. Horty:
Merging Plans with Quantitative Temporal Constraints, Temporally Extended Actions, and Conditional Branches. AIPS 2000: 264-272
1990 – 1999
- 1998
- [j1]Cristina Bicchieri, Martha E. Pollack, Carlo Rovelli, Ioannis Tsamardinos:
The potential for the evolution of co-operation among web agents. Int. J. Hum. Comput. Stud. 48(1): 9-29 (1998) - [c2]Ioannis Tsamardinos, Nicola Muscettola, Paul H. Morris:
Fast Transformation of Temporal Plans for Efficient Execution. AAAI/IAAI 1998: 254-261 - [c1]Nicola Muscettola, Paul H. Morris, Ioannis Tsamardinos:
Reformulating Temporal Plans for Efficient Execution. KR 1998: 444-452
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:37 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint