default search action
Lior Horesh
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j9]Elizabeth Newman, Lior Horesh, Haim Avron, Misha E. Kilmer:
Stable tensor neural networks for efficient deep learning. Frontiers Big Data 7 (2024) - [c29]Vasileios Kalantzis, Shashanka Ubaru, Chai Wah Wu, Georgios Kollias, Lior Horesh:
Asynchronous Randomized Trace Estimation. AISTATS 2024: 4294-4302 - [c28]Vishal Pallagani, Bharath C. Muppasani, Kaushik Roy, Francesco Fabiano, Andrea Loreggia, Keerthiram Murugesan, Biplav Srivastava, Francesca Rossi, Lior Horesh, Amit P. Sheth:
On the Prospects of Incorporating Large Language Models (LLMs) in Automated Planning and Scheduling (APS). ICAPS 2024: 432-444 - [c27]Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L. Clarkson, Mark S. Squillante, Vishnu Jejjala, Yang-Hui He, Kugendran Naidoo, Vasileios Kalantzis, Lior Horesh:
Topological data analysis on noisy quantum computers. ICLR 2024 - [i39]Vishal Pallagani, Kaushik Roy, Bharath Muppasani, Francesco Fabiano, Andrea Loreggia, Keerthiram Murugesan, Biplav Srivastava, Francesca Rossi, Lior Horesh, Amit P. Sheth:
On the Prospects of Incorporating Large Language Models (LLMs) in Automated Planning and Scheduling (APS). CoRR abs/2401.02500 (2024) - [i38]Vassilis Kalantzis, Mark S. Squillante, Shashanka Ubaru, Tayfun Gokmen, Chai Wah Wu, Anshul Gupta, Haim Avron, Tomasz Nowicki, Malte J. Rasch, O. Murat Onen, Vanessa López-Marrero, Effendi Leobandung, Yasuteru Kohda, Wilfried Haensch, Lior Horesh:
Multi-Function Multi-Way Analog Technology for Sustainable Machine Intelligence Computation. CoRR abs/2401.13754 (2024) - [i37]Liron Mor-Yosef, Shashanka Ubaru, Lior Horesh, Haim Avron:
Multivariate trace estimation using quantum state space linear algebra. CoRR abs/2405.01098 (2024) - [i36]Vassilis Kalantzis, Yuanzhe Xi, Lior Horesh, Yousef Saad:
Randomized linear solvers for computational architectures with straggling workers. CoRR abs/2407.01098 (2024) - [i35]Soumyadip Ghosh, Lior Horesh, Vassilis Kalantzis, Yingdong Lu, Tomasz Nowicki:
Regenerative Ulam-von Neumann Algorithm: An Innovative Markov chain Monte Carlo Method for Matrix Inversion. CoRR abs/2407.16661 (2024) - 2023
- [j8]Vassilis Kalantzis, Lior Horesh:
Enhanced algebraic substructuring for symmetric generalized eigenvalue problems. Numer. Linear Algebra Appl. 30(2) (2023) - [c26]Marianna Bergamaschi Ganapini, Francesco Fabiano, Lior Horesh, Andrea Loreggia, Nicholas Mattei, Keerthiram Murugesan, Vishal Pallagani, Francesca Rossi, Biplav Srivastava, Kristen Brent Venable:
Value-based Fast and Slow AI Nudging. ETHAICS@IJCAI 2023 - [c25]Vasileios Kalantzis, Mark S. Squillante, Chai Wah Wu, Anshul Gupta, Shashanka Ubaru, Tayfun Gokmen, Lior Horesh:
Solving Sparse Linear Systems via Flexible GMRES with In-Memory Analog Preconditioning. HPEC 2023: 1-7 - [c24]Vishal Pallagani, Bharath Muppasani, Biplav Srivastava, Francesca Rossi, Lior Horesh, Keerthiram Murugesan, Andrea Loreggia, Francesco Fabiano, Rony Joseph, Yathin Kethepalli:
Plansformer Tool: Demonstrating Generation of Symbolic Plans Using Transformers. IJCAI 2023: 7158-7162 - [e1]Marianna Bergamaschi Ganapini, Lior Horesh, Luís C. Lamb, Andrea Loreggia, Nicholas Mattei, Francesca Rossi, Biplav Srivastava, Kristen Brent Venable:
Proceedings of the Thinking Fast and Slow and Other Cognitive Theories in AI, a AAAI 2022 Fall Symposium, Westin Arlington Gateway in Arlington, Virginia, November 17-19, 2022. CEUR Workshop Proceedings 3332, CEUR-WS.org 2023 [contents] - [i34]Francesco Fabiano, Vishal Pallagani, Marianna Bergamaschi Ganapini, Lior Horesh, Andrea Loreggia, Keerthiram Murugesan, Francesca Rossi, Biplav Srivastava:
Fast and Slow Planning. CoRR abs/2303.04283 (2023) - [i33]Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Biplav Srivastava, Lior Horesh, Francesco Fabiano, Andrea Loreggia:
Understanding the Capabilities of Large Language Models for Automated Planning. CoRR abs/2305.16151 (2023) - [i32]Marianna Bergamaschi Ganapini, Francesco Fabiano, Lior Horesh, Andrea Loreggia, Nicholas Mattei, Keerthiram Murugesan, Vishal Pallagani, Francesca Rossi, Biplav Srivastava, Kristen Brent Venable:
Value-based Fast and Slow AI Nudging. CoRR abs/2307.07628 (2023) - [i31]Ryan Cory-Wright, Bachir El Khadir, Cristina Cornelio, Sanjeeb Dash, Lior Horesh:
AI Hilbert: From Data and Background Knowledge to Automated Scientific Discovery. CoRR abs/2308.09474 (2023) - [i30]Chai Wah Wu, Mark S. Squillante, Vasileios Kalantzis, Lior Horesh:
Stable iterative refinement algorithms for solving linear systems. CoRR abs/2309.07865 (2023) - 2022
- [j7]Vasileios Kalantzis, Mark S. Squillante, Shashanka Ubaru, Lior Horesh:
On Quantum Algorithms for Random Walks in the Nonnegative Quarter Plane. SIGMETRICS Perform. Evaluation Rev. 50(2): 42-44 (2022) - [c23]Songtao Lu, Xiaodong Cui, Mark S. Squillante, Brian Kingsbury, Lior Horesh:
Decentralized Bilevel Optimization for Personalized Client Learning. ICASSP 2022: 5543-5547 - [c22]Nadiia Chepurko, Kenneth L. Clarkson, Lior Horesh, Honghao Lin, David P. Woodruff:
Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra. ICML 2022: 3879-3900 - [c21]Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh, Jon Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi, Biplav Srivastava, Kristen Brent Venable:
Thinking Fast and Slow in AI: The Role of Metacognition. LOD (2) 2022: 502-509 - [c20]Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh, Jonathan Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi, Biplav Srivastava, Kristen Brent Venable:
Combining Fast and Slow Thinking for Human-like and Efficient Decisions in Constrained Environments. NeSy 2022: 171-185 - [c19]Songtao Lu, Siliang Zeng, Xiaodong Cui, Mark S. Squillante, Lior Horesh, Brian Kingsbury, Jia Liu, Mingyi Hong:
A Stochastic Linearized Augmented Lagrangian Method for Decentralized Bilevel Optimization. NeurIPS 2022 - [c18]Yunfei Teng, Anna Choromanska, Murray Campbell, Songtao Lu, Parikshit Ram, Lior Horesh:
Overcoming Catastrophic Forgetting via Direction-Constrained Optimization. ECML/PKDD (1) 2022: 675-692 - [c17]Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie, Lior Horesh, Mingyi Hong, Sijia Liu:
Distributed adversarial training to robustify deep neural networks at scale. UAI 2022: 2353-2363 - [i29]Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh, Jon Lenchner, Andrea Loreggia, Nicholas Mattei, Taher Rahgooy, Francesca Rossi, Biplav Srivastava, Kristen Brent Venable:
Combining Fast and Slow Thinking for Human-like and Efficient Navigation in Constrained Environments. CoRR abs/2201.07050 (2022) - [i28]Ismail Yunus Akhalwaya, Yang-Hui He, Lior Horesh, Vishnu Jejjala, William Kirby, Kugendran Naidoo, Shashanka Ubaru:
Efficient Quantum Computation of the Fermionic Boundary Operator. CoRR abs/2201.11510 (2022) - [i27]Paz Fink Shustin, Shashanka Ubaru, Vasileios Kalantzis, Lior Horesh, Haim Avron:
PCENet: High Dimensional Surrogate Modeling for Learning Uncertainty. CoRR abs/2202.05063 (2022) - [i26]Gaoyuan Zhang, Songtao Lu, Yihua Zhang, Xiangyi Chen, Pin-Yu Chen, Quanfu Fan, Lee Martie, Lior Horesh, Mingyi Hong, Sijia Liu:
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale. CoRR abs/2206.06257 (2022) - [i25]Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L. Clarkson, Mark S. Squillante, Vishnu Jejjala, Yang-Hui He, Kugendran Naidoo, Vasileios Kalantzis, Lior Horesh:
Towards Quantum Advantage on Noisy Quantum Computers. CoRR abs/2209.09371 (2022) - [i24]Wei Zheng Teo, Marco Carmosino, Lior Horesh:
Creating quantum-resistant classical-classical OWFs from quantum-classical OWFs. CoRR abs/2209.10146 (2022) - [i23]Yunhao Wang, Tianyuan Zheng, Lior Horesh:
From String Detection to Orthogonal Vector Problem. CoRR abs/2209.11452 (2022) - [i22]Kenneth L. Clarkson, Cristina Cornelio, Sanjeeb Dash, Joao Goncalves, Lior Horesh, Nimrod Megiddo:
Bayesian Experimental Design for Symbolic Discovery. CoRR abs/2211.15860 (2022) - [i21]Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Lior Horesh, Biplav Srivastava, Francesco Fabiano, Andrea Loreggia:
Plansformer: Generating Symbolic Plans using Transformers. CoRR abs/2212.08681 (2022) - 2021
- [j6]Shashanka Ubaru, Lior Horesh, Guy Cohen:
Dynamic graph and polynomial chaos based models for contact tracing data analysis and optimal testing prescription. J. Biomed. Informatics 122: 103901 (2021) - [j5]Vassilis Kalantzis, Yuanzhe Xi, Lior Horesh:
Fast Randomized Non-Hermitian Eigensolvers Based on Rational Filtering and Matrix Partitioning. SIAM J. Sci. Comput. 43(5): S791-S815 (2021) - [c16]Songtao Lu, Kaiqing Zhang, Tianyi Chen, Tamer Basar, Lior Horesh:
Decentralized Policy Gradient Descent Ascent for Safe Multi-Agent Reinforcement Learning. AAAI 2021: 8767-8775 - [c15]Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jonathan Lenchner, Nick Linck, Andrea Loreggia, Keerthiram Murugesan, Nicholas Mattei, Francesca Rossi, Biplav Srivastava:
Thinking Fast and Slow in AI. AAAI 2021: 15042-15046 - [c14]Francesco Fabiano, Marianna Bergamaschi Ganapini, Lior Horesh, Andrea Loreggia, Keerthiram Murugesan, Vishal Pallagani, Francesca Rossi, Biplav Srivastava:
Epistemic Planning in a Fast and Slow Setting. TFSOCTAI@AAAI Fall Symposium 2021 - [c13]Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh, Jonathan Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi, Biplav Srivastava, Kristen Brent Venable:
Combining Fast and Slow Thinking for Human-like and Efficient Navigation in Constrained Environments. TFSOCTAI@AAAI Fall Symposium 2021 - [c12]Vasileios Kalantzis, Anshul Gupta, Lior Horesh, Tomasz Nowicki, Mark S. Squillante, Chai Wah Wu, Tayfun Gokmen, Haim Avron:
Solving sparse linear systems with approximate inverse preconditioners on analog devices. HPEC 2021: 1-7 - [c11]Dong Hu, Shashanka Ubaru, Alex Gittens, Kenneth L. Clarkson, Lior Horesh, Vassilis Kalantzis:
Sparse Graph Based Sketching for Fast Numerical Linear Algebra. ICASSP 2021: 3255-3259 - [c10]Songtao Lu, Naweed Khan, Ismail Yunus Akhalwaya, Ryan Riegel, Lior Horesh, Alexander G. Gray:
Training Logical Neural Networks by Primal-Dual Methods for Neuro-Symbolic Reasoning. ICASSP 2021: 5559-5563 - [c9]Vasileios Kalantzis, Georgios Kollias, Shashanka Ubaru, Athanasios N. Nikolakopoulos, Lior Horesh, Kenneth L. Clarkson:
Projection techniques to update the truncated SVD of evolving matrices with applications. ICML 2021: 5236-5246 - [c8]Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E. Kilmer, Haim Avron:
Dynamic Graph Convolutional Networks Using the Tensor M-Product. SDM 2021: 729-737 - [i20]Dong Hu, Shashanka Ubaru, Alex Gittens, Kenneth L. Clarkson, Lior Horesh, Vassilis Kalantzis:
Sparse graph based sketching for fast numerical linear algebra. CoRR abs/2102.05758 (2021) - [i19]Vassilis Kalantzis, Yuanzhe Xi, Lior Horesh:
Fast randomized non-Hermitian eigensolver based on rational filtering and matrix partitioning. CoRR abs/2103.05128 (2021) - [i18]Vasileios Kalantzis, Anshul Gupta, Lior Horesh, Tomasz Nowicki, Mark S. Squillante, Chai Wah Wu:
Solving sparse linear systems with approximate inverse preconditioners on analog devices. CoRR abs/2107.06973 (2021) - [i17]Francesco Fabiano, Biplav Srivastava, Jonathan Lenchner, Lior Horesh, Francesca Rossi, Marianna Bergamaschi Ganapini:
E-PDDL: A Standardized Way of Defining Epistemic Planning Problems. CoRR abs/2107.08739 (2021) - [i16]Shashanka Ubaru, Ismail Yunus Akhalwaya, Mark S. Squillante, Kenneth L. Clarkson, Lior Horesh:
Quantum Topological Data Analysis with Linear Depth and Exponential Speedup. CoRR abs/2108.02811 (2021) - [i15]Cristina Cornelio, Sanjeeb Dash, Vernon Austel, Tyler R. Josephson, Joao Goncalves, Kenneth L. Clarkson, Nimrod Megiddo, Bachir El Khadir, Lior Horesh:
Integration of Data and Theory for Accelerated Derivable Symbolic Discovery. CoRR abs/2109.01634 (2021) - [i14]Marianna Bergamaschi Ganapini, Murray Campbell, Francesco Fabiano, Lior Horesh, Jon Lenchner, Andrea Loreggia, Nicholas Mattei, Francesca Rossi, Biplav Srivastava, Kristen Brent Venable:
Thinking Fast and Slow in AI: the Role of Metacognition. CoRR abs/2110.01834 (2021) - 2020
- [i13]Misha E. Kilmer, Lior Horesh, Haim Avron, Elizabeth Newman:
Tensor-Tensor Products for Optimal Representation and Compression. CoRR abs/2001.00046 (2020) - [i12]Vernon Austel, Cristina Cornelio, Sanjeeb Dash, Joao Goncalves, Lior Horesh, Tyler R. Josephson, Nimrod Megiddo:
Symbolic Regression using Mixed-Integer Nonlinear Optimization. CoRR abs/2006.06813 (2020) - [i11]Shashanka Ubaru, Lior Horesh, Guy Cohen:
Dynamic graph based epidemiological model for COVID-19 contact tracing data analysis and optimal testing prescription. CoRR abs/2009.04971 (2020) - [i10]Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jon Lenchner, Nick Linck, Andrea Loreggia, Keerthiram Murugesan, Nicholas Mattei, Francesca Rossi, Biplav Srivastava:
Thinking Fast and Slow in AI. CoRR abs/2010.06002 (2020) - [i9]Vassilis Kalantzis, Georgios Kollias, Shashanka Ubaru, Athanasios N. Nikolakopoulos, Lior Horesh, Kenneth L. Clarkson:
Projection techniques to update the truncated SVD of evolving matrices. CoRR abs/2010.06392 (2020) - [i8]Nadiia Chepurko, Kenneth L. Clarkson, Lior Horesh, David P. Woodruff:
Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra. CoRR abs/2011.04125 (2020) - [i7]Tom Achache, Lior Horesh, John A. Smolin:
Denoising quantum states with Quantum Autoencoders - Theory and Applications. CoRR abs/2012.14714 (2020)
2010 – 2019
- 2019
- [i6]Murphy Yuezhen Niu, Lior Horesh, Isaac Chuang:
Recurrent Neural Networks in the Eye of Differential Equations. CoRR abs/1904.12933 (2019) - [i5]Osman Asif Malik, Shashanka Ubaru, Lior Horesh, Misha E. Kilmer, Haim Avron:
Tensor Graph Convolutional Networks for Prediction on Dynamic Graphs. CoRR abs/1910.07643 (2019) - [i4]Shaokai Lin, Zichuan Wang, Lior Horesh:
Communication over Continuous Quantum Secure Dialogue using Einstein-Podolsky-Rosen States. CoRR abs/1910.08135 (2019) - 2018
- [j4]Gal Shulkind, Lior Horesh, Haim Avron:
Experimental Design for Nonparametric Correction of Misspecified Dynamical Models. SIAM/ASA J. Uncertain. Quantification 6(2): 880-906 (2018) - [i3]Elizabeth Newman, Lior Horesh, Haim Avron, Misha E. Kilmer:
Stable Tensor Neural Networks for Rapid Deep Learning. CoRR abs/1811.06569 (2018) - 2017
- [c7]Elizabeth Newman, Misha E. Kilmer, Lior Horesh:
Image classification using local tensor singular value decompositions. CAMSAP 2017: 1-5 - [i2]Elizabeth Newman, Misha E. Kilmer, Lior Horesh:
Image classification using local tensor singular value decompositions. CoRR abs/1706.09693 (2017) - 2015
- [c6]Sergiy Zhuk, Stephen Moore, Alberto Costa Nogueira Jr., Andrew A. Rawlinson, Tigran T. Tchrakian, Lior Horesh, Aleksandr Y. Aravkin, Albert Akhriev:
Source estimation for wave equations with uncertain parameters. ECC 2015: 266-270 - [c5]Stephen Moore, Devi Sudheer Chunduri, Sergiy Zhuk, Tigran T. Tchrakian, Ewout van den Berg, Albert Akhriev, Alberto Costa Nogueira Jr., Andrew A. Rawlinson, Lior Horesh:
Semi-discrete Matrix-Free Formulation of 3D Elastic Full Waveform Inversion Modeling. Euro-Par 2015: 507-518 - [c4]Haim Avron, Lior Horesh:
Community Detection Using Time-Dependent Personalized PageRank. ICML 2015: 1795-1803 - 2013
- [c3]Tara N. Sainath, Lior Horesh, Brian Kingsbury, Aleksandr Y. Aravkin, Bhuvana Ramabhadran:
Accelerating Hessian-free optimization for Deep Neural Networks by implicit preconditioning and sampling. ASRU 2013: 303-308 - [i1]Tara N. Sainath, Lior Horesh, Brian Kingsbury, Aleksandr Y. Aravkin, Bhuvana Ramabhadran:
Improving training time of Hessian-free optimization for deep neural networks using preconditioning and sampling. CoRR abs/1309.1508 (2013) - 2011
- [j3]Lior Horesh, Eldad Haber:
A Second Order Discretization of Maxwell's Equations in the Quasi-Static Regime on OcTree Grids. SIAM J. Sci. Comput. 33(5): 2805-2822 (2011) - 2010
- [c2]Dimitri Kanevsky, Avishy Carmi, Lior Horesh, Pini Gurfil, Bhuvana Ramabhadran, Tara N. Sainath:
Kalman filtering for compressed sensing. FUSION 2010: 1-8
2000 – 2009
- 2008
- [j2]Juan-Felipe P. J. Abascal, Simon R. Arridge, David Atkinson, Raya Horesh, Lorenzo Fabrizi, Marzia De Lucia, Lior Horesh, Richard H. Bayford, David S. Holder:
Use of anisotropic modelling in electrical impedance tomography; Description of method and preliminary assessment of utility in imaging brain function in the adult human head. NeuroImage 43(2): 258-268 (2008) - 2007
- [j1]O. Gilad, Lior Horesh, David S. Holder:
Design of electrodes and current limits for low frequency electrical impedance tomography of the brain. Medical Biol. Eng. Comput. 45(7): 621-633 (2007) - 2005
- [c1]Juan Fritschy, Lior Horesh, David S. Holder, Richard H. Bayford:
Applications of GRID in Clinical Neurophysiology and Electrical Impedance Tomography of Brain Function. HealthGrid 2005: 138-145
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-13 18:03 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint