default search action
BioData Mining, Volume 15
Volume 15, Number 1, 2022
- Ralf E. Wellinger, Jesús S. Aguilar-Ruiz:
A new challenge for data analytics: transposons. - Zong-Xian Yin, Hong-Ming Xu:
An unsupervised image segmentation algorithm for coronary angiography. - Songtham Anuntakarun, Supatcha Lertampaiporn, Teeraphan Laomettachit, Warin Wattanapornprom, Marasri Ruengjitchatchawalya:
mSRFR: a machine learning model using microalgal signature features for ncRNA classification. - David Chushig-Muzo, Cristina Soguero-Ruíz, Pablo de Miguel-Bohoyo, Inmaculada Mora-Jiménez:
Learning and visualizing chronic latent representations using electronic health records. - Rayan Eid, Claudine Landès, Alix Pernet, Emmanuel Benoît, Pierre Santagostini, Angelina El Ghaziri, Julie Bourbeillon:
DIVIS: a semantic DIstance to improve the VISualisation of heterogeneous phenotypic datasets. - Philip J. Freda, Henry R. Kranzler, Jason H. Moore:
Novel digital approaches to the assessment of problematic opioid use. - Marc Joiret, Jestinah M. Mahachie John, Elena S. Gusareva, Kristel Van Steen:
Correction: Confounding of linkage disequilibrium patterns in large scale DNA based gene-gene interaction studies. - David Vadnais, Michael Middleton, Oluwatosin Oluwadare:
ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data. - Donald E. Brown, Suchetha Sharma, James A. Jablonski, Arthur Weltman:
Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data. - Mauro Nascimben, Lia Rimondini, Davide Corà, Manolo Venturin:
Polygenic risk modeling of tumor stage and survival in bladder cancer. - Davide Chicco, Abbas Alameer, Sara Rahmati, Giuseppe Jurman:
Towards a potential pan-cancer prognostic signature for gene expression based on probesets and ensemble machine learning. - David N. Nicholson, Daniel S. Himmelstein, Casey S. Greene:
Expanding a database-derived biomedical knowledge graph via multi-relation extraction from biomedical abstracts. - Shaochuan Li, Yuning Yang, Xin Wang, Jun Li, Jun Yu, Xiangtao Li, Ka-Chun Wong:
Colorectal cancer subtype identification from differential gene expression levels using minimalist deep learning. - Joseph L. Bundy, Richard S. Judson, Antony J. Williams, Christopher M. Grulke, Imran Shah, Logan J. Everett:
Predicting molecular initiating events using chemical target annotations and gene expression. - Pratik Devkota, Somya D. Mohanty, Prashanti Manda:
A Gated Recurrent Unit based architecture for recognizing ontology concepts from biological literature. - Zhixuan Zeng, Xianming Tang, Yang Liu, Zhengkun He, Xun Gong:
Interpretable recurrent neural network models for dynamic prediction of the extubation failure risk in patients with invasive mechanical ventilation in the intensive care unit. - David Dora, Timea Dora, Gabor Szegvari, Csongor Gerdán, Zoltan Lohinai:
EZCancerTarget: an open-access drug repurposing and data-collection tool to enhance target validation and optimize international research efforts against highly progressive cancers. - Ying Zeng, Yuan Chen, Zheming Yuan:
iSuc-ChiDT: a computational method for identifying succinylation sites using statistical difference table encoding and the chi-square decision table classifier. - Wanchaloem Nadda, Waraporn Boonchieng, Ekkarat Boonchieng:
Influenza, dengue and common cold detection using LSTM with fully connected neural network and keywords selection. - Zeineb Safi, Neethu Venugopal, Haytham Ali, Michel Makhlouf, Faisal Farooq, Sabri Boughorbel:
Analysis of risk factors progression of preterm delivery using electronic health records. - Rakesh Kumar Saroj, Pawan Kumar Yadav, Rajneesh Singh, Obvious N. Chilyabanyama:
Machine Learning Algorithms for understanding the determinants of under-five Mortality. - Pelin Gundogdu, Carlos Loucera, Inmaculada Alamo-Alvarez, Joaquín Dopazo, Isabel Nepomuceno:
Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data. - Noura Mohammed Abdelwahed, Ghada Samy El-Tawel, Mohamed A. Makhlouf:
Effective hybrid feature selection using different bootstrap enhances cancers classification performance. - Bin Yang, Wenzheng Bao, Baitong Chen, Dan Song:
Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data. - Roland Albert A. Romero, Mariefel Nicole Y. Deypalan, Suchit Mehrotra, John Titus Jungao, Natalie E. Sheils, Elisabetta Manduchi, Jason H. Moore:
Benchmarking AutoML frameworks for disease prediction using medical claims. - Alexa A. Woodward, Deanne M. Taylor, Elizabeth Goldmuntz, Laura E. Mitchell, A. J. Agopian, Jason H. Moore, Ryan J. Urbanowicz:
Gene-Interaction-Sensitive enrichment analysis in congenital heart disease. - Colinda C. J. M. Simons, Leo J. Schouten, Roger W. L. Godschalk, Frederik-Jan van Schooten, Monika Stoll, Kristel Van Steen, Piet A. van den Brandt, Matty P. Weijenberg:
Polymorphisms in the mTOR-PI3K-Akt pathway, energy balance-related exposures and colorectal cancer risk in the Netherlands Cohort Study. - Rawan AlSaad, Qutaibah M. Malluhi, Sabri Boughorbel:
PredictPTB: an interpretable preterm birth prediction model using attention-based recurrent neural networks. - Hatice Büsra Lüleci, Alper Yilmaz:
Robust and rigorous identification of tissue-specific genes by statistically extending tau score. - Rahibu A. Abassi, Amina S. Msengwa:
Classification of breast cancer recurrence based on imputed data: a simulation study. - Sana Nazari Nezhad, Mohammad H. Zahedi, Elham Farahani:
Detecting diseases in medical prescriptions using data mining methods.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.