![](https://dblp.uni-trier.de./img/logo.320x120.png)
![search dblp search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
![search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
default search action
TREC 2023: Gaithersburg, Maryland, USA
- Ian Soboroff, Angela Ellis:
The Thirty-Second Text REtrieval Conference Proceedings (TREC 2023), Gaithersburg, MD, USA, November 14-17, 2023. NIST Special Publication 500-xxx, National Institute of Standards and Technology (NIST) 2023
Overviews
- Ian Soboroff:
Overview of TREC 2023. - Jheng-Hong Yang, Carlos Lassance, Rafael Sampaio de Rezende, Krishna Srinivasan, Miriam Redi, Stéphane Clinchant, Jimmy Lin:
TREC2023 AToMiC Overview. - Cody Buntain, Amanda Lee Hughes, Richard McCreadie, Benjamin D. Horne, Muhammad Imran, Hemant Purohit:
CrisisFACTS 2023 - Overview Paper. - Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Hossein A. Rahmani, Daniel Campos, Jimmy Lin, Ellen M. Voorhees, Ian Soboroff:
Overview of the TREC 2023 Deep Learning Track. - Mohammad Aliannejadi, Zahra Abbasiantaeb, Shubham Chatterjee, Jeffery Dalton, Leif Azzopardi:
TREC iKAT 2023: The Interactive Knowledge Assistance Track Overview. - Dawn J. Lawrie, Sean MacAvaney, James Mayfield, Paul McNamee, Douglas W. Oard, Luca Soldaini, Eugene Yang:
Overview of the TREC 2023 NeuCLIR Track. - Jaime Arguello, Samarth Bhargav, Fernando Diaz, Evangelos Kanoulas, Bhaskar Mitra:
Overview of the TREC 2023 Tip-of-the-Tongue Track.
Participant Papers
- Jia-Huei Ju, Chung-Kang Lo, Yao-Cheng Lu, Kuan-Lin Lai, Cheng-Wei Huang, Wei-Hsin Chiu, Ming-Feng Tsai, Chuan-Ju Wang:
CFDA & CLIP Labs at TREC'23 Product Search Track. - Zhiqi Huang, Puxuan Yu, James Allan:
UMass at TREC 2023 NeuCLIR Track. - Xiaoyang Chen, Ben He, Le Sun, Yingfei Sun:
CIP at TREC Deep Learning Track 2023. - Luís Borges, Jamie Callan, Bruno Martins:
Team CMU-LTI at TREC 2023 Tip-of-the-Tongue Track. - Shengyao Zhuang, Bevan Koopman, Guido Zuccon:
Team IELAB at TREC Clinical Trial Track 2023: Enhancing Clinical Trial Retrieval with Neural Rankers and Large Language Models. - Maciej Rybinski, Sarvnaz Karimi:
Matching of Patient Questionnaires to Clinical Trials with Large Language Models. - Wojciech Kusa, Patrick Styll, Maximilian Seeliger, Óscar E. Mendoza, Allan Hanbury:
DoSSIER at TREC 2023 Clinical Trials Track. - Mozhgan Saeidi, Aman Jaiswal, Abhishek Dhankar, Alan Katz, Evangelos E. Milios:
MALNIS and EMA3 @ TREC 2023 Clinical Trials Track. - Hossein Salemi, Yasas Senarath, Tarin Sultana Sharika, Anuridhi Gupta, Hemant Purohit:
Summarizing Social Media & News Streams for Crisis-related Events by Integrated Content-Graph Analysis: TREC-2023 CrisisFACTS Track. - Violet Burbank, John M. Conroy, Sean Lynch, Neil P. Molino, Julia S. Yang:
Fast Extractive Summarization, Abstractive Summarization, and Hybrid Summarization for CrisisFACTS at TREC 2023. - Shivani Choudhary, Niladri Chatterjee, Subir Kumar Saha:
Information Retrieval Combined with Large Language Model: Summarization Perspective. - Amit Yadav, Sukomal Pal:
Facts Summarization at the TREC 2023: IIT(BHU) in CrisisFACTs Track. - Zahra Abbasiantaeb, Chuan Meng, David Rau, Antonis Krasakis, Hossein A. Rahmani, Mohammad Aliannejadi:
LLM-based Retrieval and Generation Pipelines for TREC Interactive Knowledge Assistance Track (iKAT) 2023. - Scott Miller, Shantanu Agarwal, Joel Barry:
ISI's SEARCHER II System for TREC's 2023 NeuCLIR Track. - Quinn Patwardhan, Grace Hui Yang:
Sequencing Matters: A Generate-Retrieve-Generate Model for Building Conversational Agents. - Luke Richmond, Priya Deshpande:
Leveraging OpenAI's Ada Embedding Model for Zero-Shot Classification at TREC 2023 Clinical Trials. - Jayr Pereira, Rodrigo Nogueira, Roberto A. Lotufo:
Large Language Models in Summarizing Social Media for Emergency Management. - Philipp Seeberger, Korbinian Riedhammer:
Multi-Query Focused Disaster Summarization via Instruction-Based Prompting. - Fengran Mo, Bole Yi, Jian-Yun Nie:
RALI@TREC iKAT 2023: Generative Query Reformulation for Conversational Information Seeking. - Reo Yoshikoshi, Tetsuya Sakai:
RSLTOT at the TREC 2023 ToT Track. - Jack Cheverton, Sharon G. Small, Ting Liu:
Query Expansion for Crisis Events. - Sumanta Kashyapi, Laura Dietz:
Exploring Topic Landscape for Question-Answering Models in Hyperbolic Embedding Space. - Thong Nguyen, Mariya Hendriksen, Andrew Yates:
Multimodal Learned Sparse Retrieval for Image Suggestion Task. - Georgios Peikos:
UNIMIB at TREC 2023 Clinical Trials Track. - Dake Zhang:
UWaterlooMDS at TREC 2023: Deep Learning Track and Tip-of-the-Tongue Track. - Aritra Kumar Lahiri, Emrul Hasan, Qinmin Vivian Hu, Cherie Ding:
TMU at TREC Clinical Trials Track 2023. - Maik Fröbe, Christine Brychcy, Elisa Kluge, Eric Oliver Schmidt, Matthias Hagen:
Webis at TREC 2023: Tip-of-the-Tongue track. - Henry Feild, Jaime Arguello:
TREC-ToT: Endicott and UNC Notebook Paper. - Jheng-Hong Yang, Jimmy Lin:
TREC 2023 - h2oloo in the Product Search Challenge. - Carlos Lassance, Ronak Pradeep, Jimmy Lin:
Naverloo @ TREC Deep Learning and Neuclir 2023: As Easy as Zero, One, Two, Three - Cascading Dual Encoders, Mono, Duo, and Listo for Ad-Hoc Retrieval. - Eugene Yang, Dawn J. Lawrie, James Mayfield:
HLTCOE at TREC 2023 NeuCLIR Track. - Gi-taek An, Woo-Seok Choi, Jun-Yong Park, Kyung-Soon Lee:
JBNU at TREC 2023 Product Search Track. - Phichamon Theamtun, Takashi Yukawa:
nut-kslab at TREC 2023 CrisisFACTS track. - Jongho Kim, Soona Hong, Seung-won Hwang:
SNU LDILAB @ TREC Tip of the tongue 2023. - Daniel Campos, Surya Kallumadi, Corby Rosset, Cheng Xiang Zhai, Alessandro Magnani:
OVERVIEW OF THE TREC 2023 PRODUCT PRODUCT SEARCH TRACK. - Rita Borges de Lima, Rodrygo L. T. Santos:
UFMG at the TREC 2023 Tip of the Tongue Track. - Suraj Nair, Douglas W. Oard:
BLADE: The University of Maryland at the TREC 2023 NeuCLIR Track. - Andrew Parry, Thomas Jänich, Sean MacAvaney, Iadh Ounis:
Generative Relevance Feedback and Convergence of Adaptive Re-Ranking: University of Glasgow Terrier Team at TREC DL 2023. - Lingzhen Zheng, Kaiyu Yang, Haitao Yu, Sumio Fujita, Hideo Joho:
University of Tsukuba Team at the TREC 2023 Interactive Knowledge Assistance Track. - Kaiyu Yang, Lingzhen Zheng, Haitao Yu, Sumio Fujita, Hideo Joho:
University of Tsukuba Team at the TREC 2023 Deep Learning Track.
![](https://dblp.uni-trier.de./img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.