default search action
Optimal Transport, 2014
- Yann Ollivier, Herve Pajot, Cédric Villani:
Optimal Transport - Theory and Applications. London Mathematical Society lecture note series 413, Cambridge University Press 2014, ISBN 978-1-10-768949-7
Part I Short Courses
- Filippo Santambrogio:
Introduction to optimal transport theory. Optimal Transport 2014: 3-21 - Filippo Santambrogio:
Models and applications of optimal transport in economics, traffic, and urban planning. Optimal Transport 2014: 22-40 - Ivan Gentil:
Logarithmic Sobolev inequality for diffusion semigroups. Optimal Transport 2014: 41-57 - Luigi Ambrosio, Alessio Figalli:
Lecture notes on variational models for incompressible Euler equations. Optimal Transport 2014: 58-71 - Peter Topping:
Ricci flow: the foundations via optimal transportation. Optimal Transport 2014: 72-99 - Sara Daneri, Giuseppe Savaré:
Lecture notes on gradient flows and optimal transport. Optimal Transport 2014: 100-144 - Shin-ichi Ohta:
Ricci curvature, entropy, and optimal transport. Optimal Transport 2014: 145-202
Part 2: Surveys and research papers
- Olivier Besson, Martine Picq, Jérôme Poussin:
Computing a mass transport problem with a least-squares method. Optimal Transport 2014: 203-215 - Mathias Beiglböck, Christian Léonard, Walter Schachermayer:
On the duality theory for the Monge?Kantorovich transport problem. Optimal Transport 2014: 216-265 - François Bolley:
10 Optimal coupling for mean field limits. Optimal Transport 2014: 266-273 - Patrick Cattiaux, Arnaud Guillin:
Functional inequalities via Lyapunov conditions. Optimal Transport 2014: 274-287 - Quentin Mérigot:
Size of the medial axis and stability of Federer?s curvature measures. Optimal Transport 2014: 288
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.