- 2024
- Mohamed Aghaddar, Liu Nuo Su, Manel Slokom, Lucas Barnhoorn, Peter-Paul de Wolf:
A Case Study Exploring Data Synthesis Strategies on Tabular vs. Aggregated Data Sources for Official Statistics. PSD 2024: 420-435 - Hanna Brenzel, Martin Palm, Jan Weymeirsch, Ralf T. Münnich:
Privacy and Disclosure Risks in Spatial Dynamic Microsimulations. PSD 2024: 310-326 - James Thomas Brown, Ellen Wright Clayton, Michael E. Matheny, Murat Kantarcioglu, Yevgeniy Vorobeychik, Bradley A. Malin:
Robin Hood: A De-identification Method to Preserve Minority Representation for Disparities Research. PSD 2024: 67-83 - Simon Cremer, Lydia Jehmlich, Rainer Lenz:
Masking Georeferenced Health Data - An Analysis Taking the Example of Partially Synthetic Data on Sleep Disorder. PSD 2024: 297-309 - Giuseppe D'Acquisto, Aloni Cohen, Maurizio Naldi, Kobbi Nissim:
From Isolation to Identification. PSD 2024: 3-17 - Mark J. Elliot, Claire Little, Richard Allmendinger:
The Production of Bespoke Synthetic Teaching Datasets Without Access to the Original Data. PSD 2024: 144-157 - Emma Fössing, Jörg Drechsler:
An Evaluation of Synthetic Data Generators Implemented in the Python Library Synthcity. PSD 2024: 178-193 - Paul Francis:
A Comparison of SynDiffix Multi-table Versus Single-table Synthetic Data. PSD 2024: 161-177 - Elizabeth Green, Felix Ritche, Paul White:
The statbarn: A New Model for Output Statistical Disclosure Control. PSD 2024: 284-293 - James Jackson, Robin Mitra, Brian Francis, Iain Dove:
Obtaining (ε ,δ )-Differential Privacy Guarantees When Using a Poisson Mechanism to Synthesize Contingency Tables. PSD 2024: 102-112 - Simon Xi Ning Kolb, Jui Andreas Tang, Sarah Giessing:
Synthetic Data: Comparing Utility and Risk in Microdata and Tables. PSD 2024: 225-239 - Saloni Kwatra, Vicenç Torra:
DISCOLEAF: Personalized DIScretization of COntinuous Attributes for LEArning with Federated Decision Trees. PSD 2024: 344-357 - Øyvind Langsrud:
Secondary Cell Suppression by Gaussian Elimination: An Algorithm Suitable for Handling Issues with Zeros and Singletons. PSD 2024: 87-101 - Jonathan Latner, Marcel Neunhoeffer, Jörg Drechsler:
Generating Synthetic Data is Complicated: Know Your Data and Know Your Generator. PSD 2024: 115-128 - Marko Miletic, Murat Sariyar:
Assessing the Potentials of LLMs and GANs as State-of-the-Art Tabular Synthetic Data Generation Methods. PSD 2024: 374-389 - Krishnamurty Muralidhar, Steven Ruggles:
Escalation of Commitment: A Case Study of the United States Census Bureau Efforts to Implement Differential Privacy for the 2020 Decennial Census. PSD 2024: 393-402 - Anna Oganian, Jörg Drechsler, Mehtab Iqbal:
Evaluating the Pseudo Likelihood Approach for Synthesizing Surveys Under Informative Sampling. PSD 2024: 129-143 - Katariina Perkonoja, Joni Virta:
Asymptotic Utility of Spectral Anonymization. PSD 2024: 51-66 - Gillian M. Raab:
Privacy Risk from Synthetic Data: Practical Proposals. PSD 2024: 254-273 - David Sánchez, Najeeb Jebreel, Krishnamurty Muralidhar, Josep Domingo-Ferrer, Alberto Blanco-Justicia:
An Examination of the Alleged Privacy Threats of Confidence-Ranked Reconstruction of Census Microdata. PSD 2024: 213-224 - Manel Slokom, Shruti Agrawal, Nynke C. Krol, Peter-Paul de Wolf:
Relational Or Single: A Comparative Analysis of Data Synthesis Approaches for Privacy and Utility on a Use Case from Statistical Office. PSD 2024: 403-419 - Takumi Sugiyama, Hiroto Oosugi, Io Yamanaka, Kazuhiro Minami:
Utility Analysis of Differentially Private Anonymized Data Based on Random Sampling. PSD 2024: 35-47 - Oscar Thees, Jirí Novák, Matthias Templ:
Evaluation of Synthetic Data Generators on Complex Tabular Data. PSD 2024: 194-209 - Ryotaro Toma, Hiroaki Kikuchi:
Combinations of AI Models and XAI Metrics Vulnerable to Record Reconstruction Risk. PSD 2024: 329-343 - Tran Tran, Matthew Reimherr, Aleksandra B. Slavkovic:
Differentially Private Quantile Regression. PSD 2024: 18-34 - Carolina Trindade, Luis Antunes, Tânia Carvalho, Nuno Moniz:
Synthetic Data Outliers: Navigating Identity Disclosure. PSD 2024: 240-253 - Oualid Zari, Javier Parra-Arnau, Ayse Ünsal, Melek Önen:
Node Injection Link Stealing Attack. PSD 2024: 358-373 - Josep Domingo-Ferrer, Melek Önen:
Privacy in Statistical Databases - International Conference, PSD 2024, Antibes Juan-les-Pins, France, September 25-27, 2024, Proceedings. Lecture Notes in Computer Science 14915, Springer 2024, ISBN 978-3-031-69650-3 [contents] - 2022
- Yulliwas Ameur, Rezak Aziz, Vincent Audigier, Samia Bouzefrane:
Secure and Non-interactive k-NN Classifier Using Symmetric Fully Homomorphic Encryption. PSD 2022: 142-154