default search action
John W. Paisley
Person information
- affiliation: Columbia University, Department of Electrical Engineering, New York, NY, USA
- affiliation: Columbia University, Data Science Institute, New York, NY, USA
- affiliation (former): University of California Berkeley, Department of Electrical Engineering and Computer Science, CA, USA
- affiliation (former): Princeton University, Computer Science Department, NJ, USA
- affiliation (PhD): Duke University, Durham, NC, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c51]Jian Xu, Delu Zeng, John W. Paisley:
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference. ICML 2024 - [i44]Wei Chen, Shian Du, Shigui Li, Delu Zeng, John W. Paisley:
Entropy-Informed Weighting Channel Normalizing Flow. CoRR abs/2407.04958 (2024) - [i43]Jian Xu, Delu Zeng, John W. Paisley:
Sparse Inducing Points in Deep Gaussian Processes: Enhancing Modeling with Denoising Diffusion Variational Inference. CoRR abs/2407.17033 (2024) - [i42]Jian Xu, Zhiqi Lin, Shigui Li, Min Chen, Junmei Yang, Delu Zeng, John W. Paisley:
Flexible Bayesian Last Layer Models Using Implicit Priors and Diffusion Posterior Sampling. CoRR abs/2408.03746 (2024) - [i41]Jian Xu, Zhiqi Lin, Min Chen, Junmei Yang, Delu Zeng, John W. Paisley:
Fully Bayesian Differential Gaussian Processes through Stochastic Differential Equations. CoRR abs/2408.06069 (2024) - [i40]Jian Xu, Delu Zeng, John W. Paisley:
Information Geometry and Beta Link for Optimizing Sparse Variational Student-t Processes. CoRR abs/2408.06699 (2024) - 2023
- [j32]Manni Liu, Jiabin Huang, Delu Zeng, Xinghao Ding, John W. Paisley:
A Multiscale Approach to Deep Blind Image Quality Assessment. IEEE Trans. Image Process. 32: 1656-1667 (2023) - [j31]Huangxing Lin, Weihong Zeng, Yihong Zhuang, Xinghao Ding, Yue Huang, John W. Paisley:
Learning Rate Dropout. IEEE Trans. Neural Networks Learn. Syst. 34(11): 9029-9039 (2023) - [c50]Huangxing Lin, Yihong Zhuang, Xinghao Ding, Delu Zeng, Yue Huang, Xiaotong Tu, John W. Paisley:
Self-Supervised Image Denoising Using Implicit Deep Denoiser Prior. AAAI 2023: 1586-1594 - [i39]San Gultekin, Brendan Kitts, Aaron Flores, John W. Paisley:
Nonlinear Kalman Filtering with Reparametrization Gradients. CoRR abs/2303.04450 (2023) - [i38]Jian Xu, Shian Du, Junmei Yang, Xinghao Ding, John W. Paisley, Delu Zeng:
Double Normalizing Flows: Flexible Bayesian Gaussian Process ODEs Learning. CoRR abs/2309.09222 (2023) - 2022
- [j30]Liyan Sun, Chenxin Li, Xinghao Ding, Yue Huang, Zhong Chen, Guisheng Wang, Yizhou Yu, John W. Paisley:
Few-shot medical image segmentation using a global correlation network with discriminative embedding. Comput. Biol. Medicine 140: 105067 (2022) - [c49]Ghazal Fazelnia, John W. Paisley:
Probabilistic Orthogonal Matching Pursuit. IEEE Big Data 2022: 26-35 - [c48]John W. Paisley, Sebastian Rowland, Jeremiah Zhe Liu, Brent A. Coull, Marianthi-Anna Kioumourtzoglou:
Bayesian Nonparametric Model Averaging Using Scalable Gaussian Process Representations. IEEE Big Data 2022: 55-64 - 2021
- [j29]Xueyang Fu, Qi Qi, Zheng-Jun Zha, Xinghao Ding, Feng Wu, John W. Paisley:
Successive Graph Convolutional Network for Image De-raining. Int. J. Comput. Vis. 129(5): 1691-1711 (2021) - [j28]Xueyang Fu, Wu Wang, Yue Huang, Xinghao Ding, John W. Paisley:
Deep Multiscale Detail Networks for Multiband Spectral Image Sharpening. IEEE Trans. Neural Networks Learn. Syst. 32(5): 2090-2104 (2021) - [i37]Huangxing Lin, Yihong Zhuang, Delu Zeng, Yue Huang, Xinghao Ding, John W. Paisley:
Self-Verification in Image Denoising. CoRR abs/2111.00666 (2021) - 2020
- [j27]Liyan Sun, Yawen Wu, Binglin Shu, Xinghao Ding, Congbo Cai, Yue Huang, John W. Paisley:
A dual-domain deep lattice network for rapid MRI reconstruction. Neurocomputing 397: 94-107 (2020) - [j26]Huangxing Lin, Yanlong Li, Xueyang Fu, Xinghao Ding, Yue Huang, John W. Paisley:
Rain O'er Me: Synthesizing Real Rain to Derain With Data Distillation. IEEE Trans. Image Process. 29: 7668-7680 (2020) - [j25]Liyan Sun, Jiexiang Wang, Yue Huang, Xinghao Ding, Hayit Greenspan, John W. Paisley:
An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection. IEEE J. Biomed. Health Informatics 24(8): 2303-2314 (2020) - [j24]Liyan Sun, Wenao Ma, Xinghao Ding, Yue Huang, Dong Liang, John W. Paisley:
A 3D Spatially Weighted Network for Segmentation of Brain Tissue From MRI. IEEE Trans. Medical Imaging 39(4): 898-909 (2020) - [j23]Xueyang Fu, Borong Liang, Yue Huang, Xinghao Ding, John W. Paisley:
Lightweight Pyramid Networks for Image Deraining. IEEE Trans. Neural Networks Learn. Syst. 31(6): 1794-1807 (2020) - [j22]San Gultekin, Avishek Saha, Adwait Ratnaparkhi, John W. Paisley:
MBA: Mini-Batch AUC Optimization. IEEE Trans. Neural Networks Learn. Syst. 31(12): 5561-5574 (2020) - [c47]Ghazal Fazelnia, Mark Ibrahim, Ceena Modarres, Kevin Wu, John W. Paisley:
Mixed membership recurrent neural networks for modeling customer purchases. ICAIF 2020: 36:1-36:8 - [c46]San Gultekin, John W. Paisley:
Risk Bounds for Low Cost Bipartite Ranking. UAI 2020: 959-968 - [i36]Arunesh Mittal, Paul Sajda, John W. Paisley:
Deep Bayesian Nonparametric Factor Analysis. CoRR abs/2011.04770 (2020) - [i35]Arunesh Mittal, Scott W. Linderman, John W. Paisley, Paul Sajda:
Bayesian recurrent state space model for rs-fMRI. CoRR abs/2011.07365 (2020) - [i34]Huangxing Lin, Yihong Zhuang, Yue Huang, Xinghao Ding, Yizhou Yu, Xiaoqing Liu, John W. Paisley:
Adaptive noise imitation for image denoising. CoRR abs/2011.14512 (2020)
2010 – 2019
- 2019
- [j21]Liyan Sun, Zhiwen Fan, Xueyang Fu, Yue Huang, Xinghao Ding, John William Paisley:
A Deep Information Sharing Network for Multi-Contrast Compressed Sensing MRI Reconstruction. IEEE Trans. Image Process. 28(12): 6141-6153 (2019) - [j20]San Gultekin, John W. Paisley:
Online Forecasting Matrix Factorization. IEEE Trans. Signal Process. 67(5): 1223-1236 (2019) - [c45]Mark Ibrahim, Melissa Louie, Ceena Modarres, John W. Paisley:
Global Explanations of Neural Networks: Mapping the Landscape of Predictions. AIES 2019: 279-287 - [c44]Aonan Zhang, Quan Wang, Zhenyao Zhu, John W. Paisley, Chong Wang:
Fully Supervised Speaker Diarization. ICASSP 2019: 6301-6305 - [c43]Xueyang Fu, Zheng-Jun Zha, Feng Wu, Xinghao Ding, John W. Paisley:
JPEG Artifacts Reduction via Deep Convolutional Sparse Coding. ICCV 2019: 2501-2510 - [c42]Wu Wang, Weihong Zeng, Yue Huang, Xinghao Ding, John W. Paisley:
Deep Blind Hyperspectral Image Fusion. ICCV 2019: 4149-4158 - [c41]Aonan Zhang, John W. Paisley:
Random Function Priors for Correlation Modeling. ICML 2019: 7424-7433 - [c40]Liyan Sun, Zhiwen Fan, Xinghao Ding, Yue Huang, John W. Paisley:
Joint CS-MRI Reconstruction and Segmentation with a Unified Deep Network. IPMI 2019: 492-504 - [c39]Tao Tu, John W. Paisley, Stefan Haufe, Paul Sajda:
A state-space model for inferring effective connectivity of latent neural dynamics from simultaneous EEG/fMRI. NeurIPS 2019: 4664-4673 - [c38]Jeremiah Z. Liu, John W. Paisley, Marianthi-Anna Kioumourtzoglou, Brent A. Coull:
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning. NeurIPS 2019: 8950-8961 - [i33]Mark Ibrahim, Melissa Louie, Ceena Modarres, John W. Paisley:
Global Explanations of Neural Networks: Mapping the Landscape of Predictions. CoRR abs/1902.02384 (2019) - [i32]Huangxing Lin, Yanlong Li, Xinghao Ding, Weihong Zeng, Yue Huang, John W. Paisley:
Rain O'er Me: Synthesizing real rain to derain with data distillation. CoRR abs/1904.04605 (2019) - [i31]Aonan Zhang, John W. Paisley:
Random Function Priors for Correlation Modeling. CoRR abs/1905.03826 (2019) - [i30]Adji B. Dieng, John W. Paisley:
Reweighted Expectation Maximization. CoRR abs/1906.05850 (2019) - [i29]Jeremiah Zhe Liu, John W. Paisley, Marianthi-Anna Kioumourtzoglou, Brent A. Coull:
Accurate Uncertainty Estimation and Decomposition in Ensemble Learning. CoRR abs/1911.04061 (2019) - [i28]Huangxing Lin, Weihong Zeng, Xinghao Ding, Yue Huang, Chenxi Huang, John W. Paisley:
Learning Rate Dropout. CoRR abs/1912.00144 (2019) - [i27]San Gultekin, John W. Paisley:
Risk Bounds for Low Cost Bipartite Ranking. CoRR abs/1912.00537 (2019) - [i26]Huangxing Lin, Weihong Zeng, Xinghao Ding, Xueyang Fu, Yue Huang, John W. Paisley:
Noise2Blur: Online Noise Extraction and Denoising. CoRR abs/1912.01158 (2019) - 2018
- [j19]Lei Liu, Feng Zhou, Xueru Bai, John W. Paisley, Hongbing Ji:
A Modified EM Algorithm for ISAR Scatterer Trajectory Matrix Completion. IEEE Trans. Geosci. Remote. Sens. 56(7): 3953-3962 (2018) - [j18]Xiangyong Cao, Feng Zhou, Lin Xu, Deyu Meng, Zongben Xu, John W. Paisley:
Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network. IEEE Trans. Image Process. 27(5): 2354-2367 (2018) - [c37]Liyan Sun, Zhiwen Fan, Yue Huang, Xinghao Ding, John W. Paisley:
Compressed Sensing MRI Using a Recursive Dilated Network. AAAI 2018: 2444-2451 - [c36]Zhiwen Fan, Liyan Sun, Xinghao Ding, Yue Huang, Congbo Cai, John W. Paisley:
A Segmentation-Aware Deep Fusion Network for Compressed Sensing MRI. ECCV (6) 2018: 55-70 - [c35]San Gultekin, Aonan Zhang, John W. Paisley:
Asymptotic Simulated Annealing for Variational Inference. GLOBECOM 2018: 1-7 - [c34]Ghazal Fazelnia, John W. Paisley:
CRVI: Convex Relaxation for Variational Inference. ICML 2018: 1476-1484 - [c33]Aonan Zhang, John W. Paisley:
Deep Bayesian Nonparametric Tracking. ICML 2018: 5828-5836 - [c32]Shulian Cai, Jiabin Huang, Delu Zeng, Xinghao Ding, John W. Paisley:
MEnet: A Metric Expression Network for Salient Object Segmentation. IJCAI 2018: 598-605 - [i25]Liyan Sun, Zhiwen Fan, Yue Huang, Xinghao Ding, John W. Paisley:
A Deep Error Correction Network for Compressed Sensing MRI. CoRR abs/1803.08763 (2018) - [i24]Liyan Sun, Zhiwen Fan, Xinghao Ding, Congbo Cai, Yue Huang, John W. Paisley:
A Divide-and-Conquer Approach to Compressed Sensing MRI. CoRR abs/1803.09909 (2018) - [i23]Zhiwen Fan, Liyan Sun, Xinghao Ding, Yue Huang, Congbo Cai, John W. Paisley:
A Segmentation-aware Deep Fusion Network for Compressed Sensing MRI. CoRR abs/1804.01210 (2018) - [i22]Liyan Sun, Zhiwen Fan, Yue Huang, Xinghao Ding, John W. Paisley:
A Deep Information Sharing Network for Multi-contrast Compressed Sensing MRI Reconstruction. CoRR abs/1804.03596 (2018) - [i21]Liyan Sun, Zhiwen Fan, Yue Huang, Xinghao Ding, John W. Paisley:
Joint CS-MRI Reconstruction and Segmentation with a Unified Deep Network. CoRR abs/1805.02165 (2018) - [i20]Shulian Cai, Jiabin Huang, Delu Zeng, Xinghao Ding, John W. Paisley:
MEnet: A Metric Expression Network for Salient Object Segmentation. CoRR abs/1805.05638 (2018) - [i19]Xueyang Fu, Borong Liang, Yue Huang, Xinghao Ding, John W. Paisley:
Lightweight Pyramid Networks for Image Deraining. CoRR abs/1805.06173 (2018) - [i18]San Gultekin, Avishek Saha, Adwait Ratnaparkhi, John W. Paisley:
MBA: Mini-Batch AUC Optimization. CoRR abs/1805.11221 (2018) - [i17]Aonan Zhang, Quan Wang, Zhenyao Zhu, John W. Paisley, Chong Wang:
Fully Supervised Speaker Diarization. CoRR abs/1810.04719 (2018) - [i16]Liyan Sun, Jiexiang Wang, Xinghao Ding, Yue Huang, John W. Paisley:
An Adversarial Learning Approach to Medical Image Synthesis for Lesion Removal. CoRR abs/1810.10850 (2018) - [i15]Ceena Modarres, Mark Ibrahim, Melissa Louie, John W. Paisley:
Towards Explainable Deep Learning for Credit Lending: A Case Study. CoRR abs/1811.06471 (2018) - [i14]Xueyang Fu, Qi Qi, Yue Huang, Xinghao Ding, Feng Wu, John W. Paisley:
A Deep Tree-Structured Fusion Model for Single Image Deraining. CoRR abs/1811.08632 (2018) - [i13]Jeremiah Zhe Liu, John W. Paisley, Marianthi-Anna Kioumourtzoglou, Brent A. Coull:
Adaptive and Calibrated Ensemble Learning with Dependent Tail-free Process. CoRR abs/1812.03350 (2018) - [i12]Ghazal Fazelnia, Mark Ibrahim, Ceena Modarres, Kevin Wu, John W. Paisley:
Mixed Membership Recurrent Neural Networks. CoRR abs/1812.09645 (2018) - 2017
- [j17]Vicky Chen, John W. Paisley, Xinghua Lu:
Revealing common disease mechanisms shared by tumors of different tissues of origin through semantic representation of genomic alterations and topic modeling. BMC Genom. 18(S2) (2017) - [j16]Xueyang Fu, Jiabin Huang, Xinghao Ding, Yinghao Liao, John W. Paisley:
Clearing the Skies: A Deep Network Architecture for Single-Image Rain Removal. IEEE Trans. Image Process. 26(6): 2944-2956 (2017) - [j15]San Gultekin, John W. Paisley:
Nonlinear Kalman Filtering With Divergence Minimization. IEEE Trans. Signal Process. 65(23): 6319-6331 (2017) - [c31]Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao Ding, John W. Paisley:
Removing Rain from Single Images via a Deep Detail Network. CVPR 2017: 1715-1723 - [c30]Junfeng Yang, Xueyang Fu, Yuwen Hu, Yue Huang, Xinghao Ding, John W. Paisley:
PanNet: A Deep Network Architecture for Pan-Sharpening. ICCV 2017: 1753-1761 - [c29]Adji B. Dieng, Chong Wang, Jianfeng Gao, John W. Paisley:
TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency. ICLR (Poster) 2017 - [c28]Shiliang Sun, John W. Paisley, Qiuyang Liu:
Location Dependent Dirichlet Processes. IScIDE 2017: 64-76 - [c27]Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John W. Paisley, David M. Blei:
Variational Inference via \chi Upper Bound Minimization. NIPS 2017: 2732-2741 - [i11]Xiangyong Cao, Feng Zhou, Lin Xu, Deyu Meng, Zongben Xu, John W. Paisley:
Hyperspectral Image Segmentation with Markov Random Fields and a Convolutional Neural Network. CoRR abs/1705.00727 (2017) - [i10]Shiliang Sun, John W. Paisley, Qiuyang Liu:
Location Dependent Dirichlet Processes. CoRR abs/1707.00260 (2017) - [i9]San Gultekin, John W. Paisley:
Online Forecasting Matrix Factorization. CoRR abs/1712.08734 (2017) - 2016
- [j14]Xueyang Fu, Delu Zeng, Yue Huang, Yinghao Liao, Xinghao Ding, John W. Paisley:
A fusion-based enhancing method for weakly illuminated images. Signal Process. 129: 82-96 (2016) - [c26]Aonan Zhang, San Gultekin, John W. Paisley:
Stochastic Variational Inference for the HDP-HMM. AISTATS 2016: 800-808 - [c25]Aonan Zhang, John W. Paisley:
Markov Latent Feature Models. ICML 2016: 1129-1137 - [i8]Xueyang Fu, Jiabin Huang, Xinghao Ding, Yinghao Liao, John W. Paisley:
Clearing the Skies: A deep network architecture for single-image rain removal. CoRR abs/1609.02087 (2016) - [i7]Adji B. Dieng, Dustin Tran, Rajesh Ranganath, John W. Paisley, David M. Blei:
The $χ$-Divergence for Approximate Inference. CoRR abs/1611.00328 (2016) - [i6]Adji B. Dieng, Chong Wang, Jianfeng Gao, John W. Paisley:
TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency. CoRR abs/1611.01702 (2016) - 2015
- [j13]John W. Paisley, Chong Wang, David M. Blei, Michael I. Jordan:
Nested Hierarchical Dirichlet Processes. IEEE Trans. Pattern Anal. Mach. Intell. 37(2): 256-270 (2015) - [j12]Tamara Broderick, Lester W. Mackey, John W. Paisley, Michael I. Jordan:
Combinatorial Clustering and the Beta Negative Binomial Process. IEEE Trans. Pattern Anal. Mach. Intell. 37(2): 290-306 (2015) - [c24]Sarper Sertoglu, John W. Paisley:
Scalable Bayesian nonparametric dictionary learning. EUSIPCO 2015: 2771-2775 - [c23]Yiyong Jiang, Xinghao Ding, Delu Zeng, Yue Huang, John W. Paisley:
Pan-Sharpening with a Hyper-Laplacian Penalty. ICCV 2015: 540-548 - [c22]Dawen Liang, John W. Paisley:
Landmarking Manifolds with Gaussian Processes. ICML 2015: 466-474 - [c21]Aonan Zhang, John W. Paisley:
Markov Mixed Membership Models. ICML 2015: 475-483 - [c20]Aaron Schein, John W. Paisley, David M. Blei, Hanna M. Wallach:
Bayesian Poisson Tensor Factorization for Inferring Multilateral Relations from Sparse Dyadic Event Counts. KDD 2015: 1045-1054 - [i5]San Gultekin, John W. Paisley:
A Collaborative Kalman Filter for Time-Evolving Dyadic Processes. CoRR abs/1501.05624 (2015) - [i4]Aaron Schein, John W. Paisley, David M. Blei, Hanna M. Wallach:
Bayesian Poisson Tensor Factorization for Inferring Multilateral Relations from Sparse Dyadic Event Counts. CoRR abs/1506.03493 (2015) - 2014
- [j11]Yue Huang, John W. Paisley, Qin Lin, Xinghao Ding, Xueyang Fu, Xiao-Ping (Steven) Zhang:
Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI. IEEE Trans. Image Process. 23(12): 5007-5019 (2014) - [c19]Xinghao Ding, Yiyong Jiang, Yue Huang, John W. Paisley:
Pan-sharpening with a Bayesian nonparametric dictionary learning model. AISTATS 2014: 176-184 - [c18]San Gultekin, John W. Paisley:
A Collaborative Kalman Filter for Time-Evolving Dyadic Processes. ICDM 2014: 140-149 - [c17]Dawen Liang, John W. Paisley, Dan Ellis:
Codebook-based Scalable Music Tagging with Poisson Matrix Factorization. ISMIR 2014: 167-172 - [r1]John W. Paisley, David M. Blei, Michael I. Jordan:
Bayesian Nonnegative Matrix Factorization with Stochastic Variational Inference. Handbook of Mixed Membership Models and Their Applications 2014: 205-224 - 2013
- [j10]Matthew D. Hoffman, David M. Blei, Chong Wang, John W. Paisley:
Stochastic variational inference. J. Mach. Learn. Res. 14(1): 1303-1347 (2013) - [c16]Jin Xie, Yue Huang, John W. Paisley, Xinghao Ding, Xiao-Ping (Steven) Zhang:
Pan-sharpening based on nonparametric Bayesian adaptive dictionary learning. ICIP 2013: 2039-2042 - [c15]Xinghao Ding, John W. Paisley, Yue Huang, Xianbo Chen, Feng Huang, Xiao-Ping (Steven) Zhang:
Compressed sensing MRI with Bayesian dictionary learning. ICIP 2013: 2319-2323 - [c14]John W. Paisley, Chong Wang, David M. Blei, Michael I. Jordan:
A Nested HDP for Hierarchical Topic Models. ICLR (Workshop) 2013 - [i3]Yue Huang, John W. Paisley, Xianbo Chen, Xinghao Ding, Feng Huang, Xiao-Ping (Steven) Zhang:
MR Image Reconstruction from Undersampled k-Space with Bayesian Dictionary Learning. CoRR abs/1302.2712 (2013) - 2012
- [j9]Mingyuan Zhou, Haojun Chen, John W. Paisley, Lu Ren, Lingbo Li, Zhengming Xing, David B. Dunson, Guillermo Sapiro, Lawrence Carin:
Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images. IEEE Trans. Image Process. 21(1): 130-144 (2012) - [c13]John W. Paisley, David M. Blei, Michael I. Jordan:
Variational Bayesian Inference with Stochastic Search. ICML 2012 - [c12]John W. Paisley, David M. Blei, Michael I. Jordan:
Stick-Breaking Beta Processes and the Poisson Process. AISTATS 2012: 850-858 - [i2]Matthew D. Hoffman, David M. Blei, Chong Wang, John W. Paisley:
Stochastic Variational Inference. CoRR abs/1206.7051 (2012) - [i1]John W. Paisley, Chong Wang, David M. Blei, Michael I. Jordan:
Nested Hierarchical Dirichlet Processes. CoRR abs/1210.6738 (2012) - 2011
- [j8]Minhua Chen, Jorge G. Silva, John W. Paisley, Chunping Wang, David B. Dunson, Lawrence Carin:
Corrections to "Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds". IEEE Trans. Signal Process. 59(3): 1329 (2011) - [c11]John W. Paisley, Lawrence Carin, David M. Blei:
Variational Inference for Stick-Breaking Beta Process Priors. ICML 2011: 889-896 - [c10]John W. Paisley, Chong Wang, David M. Blei:
The Discrete Infinite Logistic Normal Distribution for Mixed-Membership Modeling. AISTATS 2011: 74-82 - [c9]Chong Wang, John W. Paisley, David M. Blei:
Online Variational Inference for the Hierarchical Dirichlet Process. AISTATS 2011: 752-760 - 2010
- [b1]John William Paisley:
Machine Learning with Dirichlet and Beta Process Priors: Theory and Applications. Duke University, Durham, NC, USA, 2010 - [j7]Bo Chen, Minhua Chen, John W. Paisley, Aimee K. Zaas, Christopher W. Woods, Geoffrey S. Ginsburg, Alfred O. Hero III, Joseph E. Lucas, David B. Dunson, Lawrence Carin:
Bayesian Inference of the Number of Factors in Gene-Expression Analysis: Application to Human Virus Challenge Studies. BMC Bioinform. 11: 552 (2010) - [j6]Iulian Pruteanu-Malinici, Lu Ren, John W. Paisley, Eric Wang, Lawrence Carin:
Hierarchical Bayesian Modeling of Topics in Time-Stamped Documents. IEEE Trans. Pattern Anal. Mach. Intell. 32(6): 996-1011 (2010) - [j5]John W. Paisley, Xuejun Liao, Lawrence Carin:
Active learning and basis selection for kernel-based linear models: a Bayesian perspective. IEEE Trans. Signal Process. 58(5): 2686-2700 (2010) - [j4]Minhua Chen, Jorge G. Silva, John W. Paisley, Chunping Wang, David B. Dunson, Lawrence Carin:
Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds. IEEE Trans. Signal Process. 58(12): 6140-6155 (2010) - [c8]Bo Chen, John W. Paisley, Lawrence Carin:
Sparse linear regression with beta process priors. ICASSP 2010: 1234-1237 - [c7]John W. Paisley, Lawrence Carin:
A nonparametric Bayesian model for kernel matrix completion. ICASSP 2010: 2090-2093 - [c6]John W. Paisley, Mingyuan Zhou, Guillermo Sapiro, Lawrence Carin:
Nonparametric image interpolation and dictionary learning using spatially-dependent Dirichlet and beta process priors. ICIP 2010: 1869-1872 - [c5]John W. Paisley, Aimee K. Zaas, Christopher W. Woods, Geoffrey S. Ginsburg, Lawrence Carin:
A Stick-Breaking Construction of the Beta Process. ICML 2010: 847-854
2000 – 2009
- 2009
- [j3]John W. Paisley, Lawrence Carin:
Hidden Markov models with stick-breaking priors. IEEE Trans. Signal Process. 57(10): 3905-3917 (2009) - [c4]John W. Paisley, Lawrence Carin:
Dirichlet process mixture models with multiple modalities. ICASSP 2009: 1613-1616 - [c3]John W. Paisley, Lawrence Carin:
Nonparametric factor analysis with beta process priors. ICML 2009: 777-784 - [c2]Mingyuan Zhou, Haojun Chen, John W. Paisley, Lu Ren, Guillermo Sapiro, Lawrence Carin:
Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations. NIPS 2009: 2295-2303 - 2008
- [j2]Kai Ni, John W. Paisley, Lawrence Carin, David B. Dunson:
Multi-Task Learning for Analyzing and Sorting Large Databases of Sequential Data. IEEE Trans. Signal Process. 56(8-2): 3918-3931 (2008) - 2007
- [j1]Yuting Qi, John William Paisley, Lawrence Carin:
Music Analysis Using Hidden Markov Mixture Models. IEEE Trans. Signal Process. 55(11): 5209-5224 (2007) - [c1]Yuting Qi, John William Paisley, Lawrence Carin:
Dirichlet Process HMM Mixture Models with Application to Music Analysis. ICASSP (2) 2007: 465-468
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:29 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint