


default search action
Andreas Weiermann
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j52]David Fernández-Duque, Andreas Weiermann:
Fundamental sequences and fast-growing hierarchies for the Bachmann-Howard ordinal. Ann. Pure Appl. Log. 175(8): 103455 (2024) - [j51]David Fernández-Duque
, Andreas Weiermann
:
A Walk with Goodstein. Bull. Symb. Log. 30(1): 1-19 (2024) - 2023
- [i3]Junqing Huang, Haihui Wang, Andreas Weiermann, Michael V. Ruzhansky:
Optimal Image Transport on Sparse Dictionaries. CoRR abs/2311.01984 (2023) - 2022
- [j50]David Fernández-Duque, Joost J. Joosten, Fedor Pakhomov, Konstantinos Papafilippou
, Andreas Weiermann:
Arithmetical and Hyperarithmetical Worm Battles. J. Log. Comput. 32(8): 1558-1584 (2022) - 2021
- [j49]Toshiyasu Arai, Stanley S. Wainer, Andreas Weiermann:
Goodstein sequences based on a Parametrized Ackermann-Péter function. Bull. Symb. Log. 27(2): 168-186 (2021) - [e1]Liesbeth De Mol, Andreas Weiermann, Florin Manea
, David Fernández-Duque:
Connecting with Computability - 17th Conference on Computability in Europe, CiE 2021, Virtual Event, Ghent, July 5-9, 2021, Proceedings. Lecture Notes in Computer Science 12813, Springer 2021, ISBN 978-3-030-80048-2 [contents] - 2020
- [c11]David Fernández-Duque
, Andreas Weiermann
:
Ackermannian Goodstein Sequences of Intermediate Growth. CiE 2020: 163-174 - [i2]Anton Freund, Michael Rathjen, Andreas Weiermann
:
Minimal bad sequences are necessary for a uniform Kruskal theorem. CoRR abs/2001.06380 (2020)
2010 – 2019
- 2017
- [j48]Jeroen Van der Meeren
, Michael Rathjen, Andreas Weiermann
:
An order-theoretic characterization of the Howard-Bachmann-hierarchy. Arch. Math. Log. 56(1-2): 79-118 (2017) - [j47]Michael Rathjen, Jeroen Van der Meeren
, Andreas Weiermann
:
Ordinal notation systems corresponding to Friedman's linearized well-partial-orders with gap-condition. Arch. Math. Log. 56(5-6): 607-638 (2017) - [j46]Andrey Bovykin, Andreas Weiermann
:
The strength of infinitary Ramseyan principles can be accessed by their densities. Ann. Pure Appl. Log. 168(9): 1700-1709 (2017) - 2016
- [i1]Jean Goubault-Larrecq, Monika Seisenberger, Victor L. Selivanov, Andreas Weiermann:
Well Quasi-Orders in Computer Science (Dagstuhl Seminar 16031). Dagstuhl Reports 6(1): 69-98 (2016) - 2015
- [j45]Jeroen Van der Meeren, Michael Rathjen, Andreas Weiermann
:
Well-partial-orderings and the big Veblen number. Arch. Math. Log. 54(1-2): 193-230 (2015) - [c10]Jeroen Van der Meeren, Andreas Weiermann
:
How to Compare Buchholz-Style Ordinal Notation Systems with Gordeev-Style Notation Systems. CiE 2015: 353-362 - 2014
- [c9]Michiel De Smet, Andreas Weiermann
:
Phase Transitions Related to the Pigeonhole Principle. CiE 2014: 123-132 - 2013
- [j44]Sy-David Friedman, Michael Rathjen, Andreas Weiermann
:
Slow consistency. Ann. Pure Appl. Log. 164(3): 382-393 (2013) - [j43]Andreas Weiermann
, Gunnar Wilken
:
Goodstein sequences for prominent ordinals up to the ordinal of Π11-CA0. Ann. Pure Appl. Log. 164(12): 1493-1506 (2013) - 2012
- [j42]Lew Gordeev, Andreas Weiermann
:
Phase transitions of iterated Higman-style well-partial-orderings. Arch. Math. Log. 51(1-2): 127-161 (2012) - [j41]Michiel De Smet, Andreas Weiermann
:
Goodstein sequences for prominent ordinals up to the Bachmann-Howard ordinal. Ann. Pure Appl. Log. 163(6): 669-680 (2012) - [j40]Lars Kristiansen, Jan-Christoph Schlage-Puchta, Andreas Weiermann
:
Streamlined subrecursive degree theory. Ann. Pure Appl. Log. 163(6): 698-716 (2012) - [j39]Gunnar Wilken
, Andreas Weiermann
:
Derivation Lengths Classification of Gödel's T Extending Howard's Assignment. Log. Methods Comput. Sci. 8(1) (2012) - [j38]Michiel De Smet, Andreas Weiermann
:
Sharp Thresholds for a Phase Transition Related to Weakly Increasing Sequences. J. Log. Comput. 22(2): 207-211 (2012) - [j37]Dimiter Skordev
, Andreas Weiermann
, Ivan Georgiev
:
M2-computable real numbers. J. Log. Comput. 22(4): 899-925 (2012) - [c8]Andreas Weiermann
, Alan R. Woods:
Some Natural Zero One Laws for Ordinals Below ε 0. CiE 2012: 723-732 - 2011
- [j36]Lorenzo Carlucci, Gyesik Lee, Andreas Weiermann
:
Sharp thresholds for hypergraph regressive Ramsey numbers. J. Comb. Theory A 118(2): 558-585 (2011) - [j35]Andreas Weiermann
, Gunnar Wilken
:
Ordinal arithmetic with simultaneously defined theta-functions. Math. Log. Q. 57(2): 116-132 (2011) - 2010
- [c7]Michiel De Smet, Andreas Weiermann:
A Miniaturisation of Ramsey's Theorem. CiE 2010: 118-125
2000 – 2009
- 2009
- [j34]Andreas Weiermann
:
Phase transitions for Gödel incompleteness. Ann. Pure Appl. Log. 157(2-3): 281-296 (2009) - [j33]Eran Omri
, Andreas Weiermann
:
Classifying the phase transition threshold for Ackermannian functions. Ann. Pure Appl. Log. 158(3): 156-162 (2009) - [c6]Andreas Weiermann
:
A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets. CiE 2009: 488-498 - [c5]Gunnar Wilken, Andreas Weiermann
:
Complexity of Gödel's T in lambda-Formulation. TLCA 2009: 386-400 - 2008
- [j32]Menachem Kojman
, Gyesik Lee, Eran Omri
, Andreas Weiermann:
Sharp thresholds for the phase transition between primitive recursive and Ackermannian Ramsey numbers. J. Comb. Theory A 115(6): 1036-1055 (2008) - [c4]Michiel De Smet, Andreas Weiermann:
Phase Transitions for Weakly Increasing Sequences. CiE 2008: 168-174 - 2007
- [j31]Henryk Kotlarski, Bozena Piekart
, Andreas Weiermann
:
More on lower bounds for partitioning alpha-large sets. Ann. Pure Appl. Log. 147(3): 113-126 (2007) - [j30]Arnoud V. den Boer
, Andreas Weiermann:
A Sharp Phase Transition Threshold for Elementary Descent Recursive Functions. J. Log. Comput. 17(6): 1083-1098 (2007) - [j29]Andreas Weiermann:
Phase transition thresholds for some Friedman-style independence results. Math. Log. Q. 53(1): 4-18 (2007) - 2006
- [j28]Andreas Weiermann:
Classifying the Provably Total Functions of PA. Bull. Symb. Log. 12(2): 177-190 (2006) - [j27]Andreas Weiermann:
An extremely sharp phase transition threshold for the slow growing hierarchy. Math. Struct. Comput. Sci. 16(5): 925-946 (2006) - [c3]Andreas Weiermann:
Phase Transition Thresholds for Some Natural Subclasses of the Computable Functions. CiE 2006: 556-570 - 2005
- [j26]Andreas Weiermann:
Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results. Ann. Pure Appl. Log. 136(1-2): 189-218 (2005) - 2003
- [j25]Andreas Weiermann
:
An application of results by Hardy, Ramanujan and Karamata to Ackermannian functions. Discret. Math. Theor. Comput. Sci. 6(1) (2003) - [j24]Andreas Weiermann:
An application of graphical enumeration to PA*. J. Symb. Log. 68(1): 5-16 (2003) - [c2]Georg Moser, Andreas Weiermann:
Relating Derivation Lengths with the Slow-Growing Hierarchy Directly. RTA 2003: 296-310 - 2002
- [j23]Andreas Weiermann:
Slow Versus Fast Growing. Synth. 133(1-2): 13-29 (2002) - 2001
- [j22]Andreas Weiermann:
Some Interesting Connections Between The Slow Growing Hierarchy and The Ackermann Function. J. Symb. Log. 66(2): 609-628 (2001) - [j21]Andreas Weiermann:
Gamma0 May Be Minimal Subrecursively Inaccessible. Math. Log. Q. 47(3): 397-408 (2001) - 2000
- [j20]Arnold Beckmann
, Andreas Weiermann:
Characterizing the elementary recursive functions by a fragment of Gödel's T. Arch. Math. Log. 39(7): 475-491 (2000) - [j19]Arnold Beckmann, Andreas Weiermann:
Analyzing Gödel's T Via Expanded Head Reduction Trees. Math. Log. Q. 46(4): 517-536 (2000)
1990 – 1999
- 1999
- [j18]Benjamin Blankertz, Andreas Weiermann:
A Uniform Approach for Characterizing the Provably Total Number-Theoretic Functions of KPM and (Some of) its Subsystems. Stud Logica 62(3): 399-427 (1999) - 1998
- [j17]Andreas Weiermann:
Bounding derivation lengths with functions from the slow growing hierarchy. Arch. Math. Log. 37(5-6): 427-441 (1998) - [j16]Andreas Weiermann:
How Is It that Infinitary Methods Can Be Applied to Finitary Mathematics? Gödel's T: A Case Study. J. Symb. Log. 63(4): 1348-1370 (1998) - 1997
- [j15]Andreas Weiermann:
A proof of strongly uniform termination for Gödel's TT by methods from local predicativity. Arch. Math. Log. 36(6): 445-460 (1997) - [j14]E. A. Cichon, Andreas Weiermann:
Term Rewriting Theory for the Primitive Recursive Functions. Ann. Pure Appl. Log. 83(3): 199-223 (1997) - [j13]Andreas Weiermann:
Sometimes Slow Growing is Fast Growing. Ann. Pure Appl. Log. 90(1-3): 91-99 (1997) - 1996
- [j12]Arnold Beckmann
, Andreas Weiermann:
A term rewriting characterization of the polytime functions and related complexity classes. Arch. Math. Log. 36(1): 11-30 (1996) - [j11]Andreas Weiermann:
How to Characterize Provably Total Functions by Local Predicativity. J. Symb. Log. 61(1): 52-69 (1996) - 1995
- [j10]Andreas Weiermann:
Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. Arch. Math. Log. 34(5): 313-330 (1995) - [j9]Andreas Weiermann:
Termination Proofs for Term Rewriting Systems by Lexicographic Path Orderings Imply Multiply Recursive Derivation Lengths. Theor. Comput. Sci. 139(1&2): 355-362 (1995) - 1994
- [j8]Andreas Weiermann:
Complexity Bounds for Some Finite Forms of Kruskal's Theorem. J. Symb. Comput. 18(5): 463-488 (1994) - [j7]Andreas Weiermann:
A Functorial Property of the Aczel-Buchholz-Feferman Function. J. Symb. Log. 59(3): 945-955 (1994) - [j6]Adam Cichon, Wilfried Buchholz, Andreas Weiermann
:
A Uniform Approach to Fundamental Sequences and Hierarchies. Math. Log. Q. 40: 273-286 (1994) - 1993
- [j5]Michael Rathjen, Andreas Weiermann:
Proof-Theoretic Investigations on Kruskal's Theorem. Ann. Pure Appl. Log. 60(1): 49-88 (1993) - [j4]Andreas Weiermann:
Bounds for the Closure Ordinals of Essentially Monotonic Increasing Functions. J. Symb. Log. 58(2): 664-671 (1993) - [j3]Andreas Weiermann:
A Simplified Functorial Construction of the Veblen Hierarchy. Math. Log. Q. 39: 269-273 (1993) - [j2]Andreas Weiermann:
An Order-Theoretic Characterization of the Schütte-Veblen-Hierarchy. Math. Log. Q. 39: 367-383 (1993) - 1991
- [j1]Andreas Weiermann
:
Vereinfachte Kollabierungsfunktionen und ihre Anwendungen. Arch. Math. Log. 31(2): 85-94 (1991) - [c1]Andreas Weiermann:
Proving Termination for Term Rewriting Systems. CSL 1991: 419-428
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 12:50 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint