default search action
György M. Keserü
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j35]Sonja Peter, Lydia Siragusa, Morgan Thomas, Tommaso Palomba, Simon Cross, Noel M. O'boyle, Dávid Bajusz, György G. Ferenczy, György M. Keserü, Giovanni Bottegoni, Brian Joseph Bender, I-Jen Chen, Chris de Graaf:
Comparative Study of Allosteric GPCR Binding Sites and Their Ligandability Potential. J. Chem. Inf. Model. 64(21): 8176-8192 (2024) - 2023
- [j34]Gáspár Pándy-Szekeres, Jimmy Caroli, Alibek Mamyrbekov, Ali A Kermani, György M. Keserü, Albert J. Kooistra, David E. Gloriam:
GPCRdb in 2023: state-specific structure models using AlphaFold2 and new ligand resources. Nucleic Acids Res. 51(D1): 395-402 (2023) - [j33]Dávid Bajusz, Gáspár Pándy-Szekeres, Ágnes Takács, Elvin D. de araujo, György M. Keserü:
SH2db, an information system for the SH2 domain. Nucleic Acids Res. 51(W1): 542-552 (2023) - 2022
- [j32]Amanda E. Wakefield, Dávid Bajusz, Dima Kozakov, György M. Keserü, Sandor Vajda:
Conservation of Allosteric Ligand Binding Sites in G-Protein Coupled Receptors. J. Chem. Inf. Model. 62(20): 4937-4954 (2022) - [j31]Gáspár Pándy-Szekeres, Mauricio Esguerra, Alexander S. Hauser, Jimmy Caroli, Christian Munk, Steven Pilger, György M. Keserü, Albert J. Kooistra, David E. Gloriam:
The G protein database, GproteinDb. Nucleic Acids Res. 50(D1): 518-525 (2022) - 2021
- [j30]Andrea Scarpino, László Petri, Damijan Knez, Tímea Imre, Péter Ábrányi-Balogh, György G. Ferenczy, Stanislav Gobec, György M. Keserü:
WIDOCK: a reactive docking protocol for virtual screening of covalent inhibitors. J. Comput. Aided Mol. Des. 35(2): 223-244 (2021) - [j29]Albert J. Kooistra, Stefan Mordalski, Gáspár Pándy-Szekeres, Mauricio Esguerra, Alibek Mamyrbekov, Christian Munk, György M. Keserü, David E. Gloriam:
GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Res. 49(Database-Issue): D335-D343 (2021) - 2020
- [j28]Anita Rácz, György M. Keserü:
Large-scale evaluation of cytochrome P450 2C9 mediated drug interaction potential with machine learning-based consensus modeling. J. Comput. Aided Mol. Des. 34(8): 831-839 (2020) - [j27]Levente M. Mihalovits, György G. Ferenczy, György M. Keserü:
Affinity and Selectivity Assessment of Covalent Inhibitors by Free Energy Calculations. J. Chem. Inf. Model. 60(12): 6579-6594 (2020) - [j26]Amanda E. Wakefield, Christine Yueh, Dmitri Beglov, Marcelo Santos Castilho, Dima Kozakov, György M. Keserü, Adrian Whitty, Sandor Vajda:
Benchmark Sets for Binding Hot Spot Identification in Fragment-Based Ligand Discovery. J. Chem. Inf. Model. 60(12): 6612-6623 (2020)
2010 – 2019
- 2019
- [j25]Zoltán Orgován, György G. Ferenczy, György M. Keserü:
The role of water and protein flexibility in the structure-based virtual screening of allosteric GPCR modulators: an mGlu5 receptor case study. J. Comput. Aided Mol. Des. 33(9): 787-797 (2019) - [j24]Levente M. Mihalovits, György G. Ferenczy, György M. Keserü:
Catalytic Mechanism and Covalent Inhibition of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA): Implications to the Design of Novel Antibacterials. J. Chem. Inf. Model. 59(12): 5161-5173 (2019) - 2018
- [j23]Zoltán Orgován, György G. Ferenczy, Thomas Steinbrecher, Bence Szilágyi, Dávid Bajusz, György M. Keserü:
Validation of tautomeric and protomeric binding modes by free energy calculations. A case study for the structure based optimization of d-amino acid oxidase inhibitors. J. Comput. Aided Mol. Des. 32(2): 331-345 (2018) - [j22]Andrea Scarpino, György G. Ferenczy, György M. Keserü:
Comparative Evaluation of Covalent Docking Tools. J. Chem. Inf. Model. 58(7): 1441-1458 (2018) - 2016
- [j21]Dávid Bajusz, György G. Ferenczy, György M. Keserü:
Discovery of Subtype Selective Janus Kinase (JAK) Inhibitors by Structure-Based Virtual Screening. J. Chem. Inf. Model. 56(1): 234-247 (2016) - [j20]Ádám A. Kelemen, Robert Kiss, György G. Ferenczy, László Kovács, Beáta Flachner, Zsolt Lorincz, György M. Keserü:
Structure-Based Consensus Scoring Scheme for Selecting Class A Aminergic GPCR Fragments. J. Chem. Inf. Model. 56(2): 412-422 (2016) - 2015
- [j19]Ádám A. Kelemen, György G. Ferenczy, György M. Keserü:
A desirability function-based scoring scheme for selecting fragment-like class A aminergic GPCR ligands. J. Comput. Aided Mol. Des. 29(1): 59-66 (2015) - [j18]Ádám A. Kelemen, György G. Ferenczy, György M. Keserü:
Erratum to: A desirability function-based scoring scheme for selecting fragment-like class A aminergic GPCR ligands. J. Comput. Aided Mol. Des. 29(1): 67 (2015) - [j17]Márton Vass, Balázs Jójárt, Ferenc Bogár, Gábor Paragi, György M. Keserü, Ákos Tarcsay:
Dynamics and structural determinants of ligand recognition of the 5-HT6 receptor. J. Comput. Aided Mol. Des. 29(12): 1137-1149 (2015) - 2013
- [j16]Ákos Tarcsay, Gábor Paragi, Márton Vass, Balázs Jójárt, Ferenc Bogár, György M. Keserü:
The Impact of Molecular Dynamics Sampling on the Performance of Virtual Screening against GPCRs. J. Chem. Inf. Model. 53(11): 2990-2999 (2013) - 2012
- [j15]Márton Vass, Ákos Tarcsay, György M. Keserü:
Multiple ligand docking by Glide: implications for virtual second-site screening. J. Comput. Aided Mol. Des. 26(7): 821-834 (2012) - [j14]Robert Kiss, Mark Sandor, Anikó Gere, Éva Schmidt, György Balogh, Béla Kiss, László Molnár, Christian Lemmen, György M. Keserü:
Discovery of Novel Histamine H4 and Serotonin Transporter Ligands Using the Topological Feature Tree Descriptor. J. Chem. Inf. Model. 52(1): 233-242 (2012) - [j13]György G. Ferenczy, György M. Keserü:
Thermodynamics of Fragment Binding. J. Chem. Inf. Model. 52(4): 1039-1045 (2012) - 2010
- [j12]Ákos Tarcsay, Robert Kiss, György M. Keserü:
Site of metabolism prediction on cytochrome P450 2C9: a knowledge-based docking approach. J. Comput. Aided Mol. Des. 24(5): 399-408 (2010) - [j11]Mark Sandor, Robert Kiss, György M. Keserü:
Virtual Fragment Docking by Glide: a Validation Study on 190 Protein-Fragment Complexes. J. Chem. Inf. Model. 50(6): 1165-1172 (2010) - [j10]György G. Ferenczy, György M. Keserü:
Enthalpic Efficiency of Ligand Binding. J. Chem. Inf. Model. 50(9): 1536-1541 (2010)
2000 – 2009
- 2008
- [j9]Balázs Jójárt, Robert Kiss, Béla Viskolcz, György M. Keserü:
Activation Mechanism of the Human Histamine H4 Receptor - An Explicit Membrane Molecular Dynamics Simulation Study. J. Chem. Inf. Model. 48(6): 1199-1210 (2008) - 2007
- [j8]Tímea Polgár, Dóra K. Menyhárd, György M. Keserü:
Effective virtual screening protocol for CYP2C9 ligands using a screening site constructed from flurbiprofen and S-warfarin pockets. J. Comput. Aided Mol. Des. 21(9): 539-548 (2007) - [j7]Tímea Polgár, Csaba Magyar, István Simon, György M. Keserü:
Impact of Ligand Protonation on Virtual Screening against β-Secretase (BACE1). J. Chem. Inf. Model. 47(6): 2366-2373 (2007) - 2006
- [j6]Tímea Polgár, György M. Keserü:
Ensemble Docking into Flexible Active Sites. Critical Evaluation of FlexE against JNK-3 and beta-Secretase. J. Chem. Inf. Model. 46(4): 1795-1805 (2006) - 2002
- [j5]György M. Keserü, László Molnár:
METAPRINT: A Metabolic Fingerprint. Application to Cassette Design for High-Throughput ADME Screening. J. Chem. Inf. Comput. Sci. 42(2): 437-444 (2002) - 2001
- [j4]György M. Keserü:
A virtual high throughput screen for high affinity cytochrome P450cam substrates. Implications for in silico prediction of drug metabolism. J. Comput. Aided Mol. Des. 15(7): 649-657 (2001) - [j3]István Kolossváry, György M. Keserü:
Hessian-free low-mode conformational search for large-scale protein loop optimization: application to c-jun N-terminal kinase JNK3. J. Comput. Chem. 22(1): 21-30 (2001) - [j2]György M. Keserü, László Molnár:
High-Throughput Prediction of Blood-Brain Partitioning: A Thermodynamic Approach. J. Chem. Inf. Comput. Sci. 41(1): 120-128 (2001)
1990 – 1999
- 1998
- [j1]Attila Kovács, Gábor I. Csonka, György M. Keserü:
Comparison of ab initio and density functional methods for vibrational analysis of TeCl4. J. Comput. Chem. 19(3): 308-318 (1998)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-23 20:35 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint