default search action
Nils Daniel Forkert
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j35]Sarmad Maqsood, Robertas Damasevicius, Rytis Maskeliunas, Nils D. Forkert, Shahab Haider, Shahid Latif:
Csec-net: a novel deep features fusion and entropy-controlled firefly feature selection framework for leukemia classification. Health Inf. Sci. Syst. 13(1): 9 (2025) - [j34]Kimberly Amador, Noah Pinel, Anthony J. Winder, Jens Fiehler, Matthias Wilms, Nils D. Forkert:
A cross-attention-based deep learning approach for predicting functional stroke outcomes using 4D CTP imaging and clinical metadata. Medical Image Anal. 99: 103381 (2025) - 2024
- [j33]Alejandro Gutierrez, Kimberly Amador, Anthony J. Winder, Matthias Wilms, Jens Fiehler, Nils D. Forkert:
Annotation-free prediction of treatment-specific tissue outcome from 4D CT perfusion imaging in acute ischemic stroke. Comput. Medical Imaging Graph. 114: 102376 (2024) - [j32]Sarmad Maqsood, Robertas Damasevicius, Sana Shahid, Nils D. Forkert:
MOX-NET: Multi-stage deep hybrid feature fusion and selection framework for monkeypox classification. Expert Syst. Appl. 255: 124584 (2024) - [j31]Raissa Souza, Emma A. M. Stanley, Milton Camacho, Richard Camicioli, Oury Monchi, Zahinoor Ismail, Matthias Wilms, Nils D. Forkert:
A multi-center distributed learning approach for Parkinson's disease classification using the traveling model paradigm. Frontiers Artif. Intell. 7 (2024) - [j30]Christopher Nielsen, Raissa Souza, Matthias Wilms, Nils D. Forkert:
Foundation model-driven distributed learning for enhanced retinal age prediction. J. Am. Medical Informatics Assoc. 31(11): 2550-2559 (2024) - [j29]Emma A. M. Stanley, Raissa Souza, Anthony J. Winder, Vedant Gulve, Kimberly Amador, Matthias Wilms, Nils D. Forkert:
Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging. J. Am. Medical Informatics Assoc. 31(11): 2613-2621 (2024) - [j28]Kimberly Amador, Alejandro Gutierrez, Anthony J. Winder, Jens Fiehler, Matthias Wilms, Nils D. Forkert:
Providing clinical context to the spatio-temporal analysis of 4D CT perfusion to predict acute ischemic stroke lesion outcomes. J. Biomed. Informatics 149: 104567 (2024) - [j27]Raissa Souza, Anthony J. Winder, Emma A. M. Stanley, Vibujithan Vigneshwaran, Milton Camacho, Richard Camicioli, Oury Monchi, Matthias Wilms, Nils D. Forkert:
Identifying Biases in a Multicenter MRI Database for Parkinson's Disease Classification: Is the Disease Classifier a Secret Site Classifier? IEEE J. Biomed. Health Informatics 28(4): 2047-2054 (2024) - [c62]Kimberly Amador, Anthony J. Winder, Noah Pinel, Jens Fiehler, Matthias Wilms, Nils D. Forkert:
Unveiling the Temporal Patterns of a 4D CTP Stroke Lesion Outcome Prediction Model Through Attention Analysis. ISBI 2024: 1-5 - [c61]Matthias Wilms, Ahmad O. Ahsan, Erik Y. Ohara, Gabrielle Dagasso, Elizabeth Macavoy, Emma A. M. Stanley, Vibujithan Vigneshwaran, Nils D. Forkert:
A Lightweight 3D Conditional Diffusion Model for Self-explainable Brain Age Prediction in Adults and Children. MLCN@MICCAI 2024: 57-67 - [c60]Raissa Souza, Emma A. M. Stanley, Richard Camicioli, Oury Monchi, Zahinoor Ismail, Matthias Wilms, Nils D. Forkert:
Do Sites Benefit Equally from Distributed Learning in Medical Image Analysis? FAIMI/EPIMI@MICCAI 2024: 119-128 - [c59]Emma A. M. Stanley, Raissa Souza, Anthony J. Winder, Matthias Wilms, G. Bruce Pike, Gabrielle Dagasso, Christopher Nielsen, Sarah J. MacEachern, Nils D. Forkert:
Assessing the Impact of Sociotechnical Harms in AI-Based Medical Image Analysis. FAIMI/EPIMI@MICCAI 2024: 163-175 - 2023
- [j26]Alejandro Gutierrez, Anup Tuladhar, Matthias Wilms, Deepthi Rajashekar, Michael D. Hill, Andrew Demchuk, Mayank Goyal, Jens Fiehler, Nils D. Forkert:
Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients. Int. J. Comput. Assist. Radiol. Surg. 18(5): 827-836 (2023) - [j25]Banafshe Felfeliyan, Nils D. Forkert, Abhilash Rakkunedeth Hareendranathan, David Cornel, Yuyue Zhou, Gregor Kuntze, Jacob L. Jaremko, Janet Lenore Ronsky:
Self-supervised-RCNN for medical image segmentation with limited data annotation. Comput. Medical Imaging Graph. 109: 102297 (2023) - [j24]Jasmine A. Moore, Matthias Wilms, Alejandro Gutierrez, Zahinoor Ismail, Kayson Fakhar, Fatemeh Hadaeghi, Claus C. Hilgetag, Nils D. Forkert:
Simulation of neuroplasticity in a CNN-based in-silico model of neurodegeneration of the visual system. Frontiers Comput. Neurosci. 17 (2023) - [j23]Raissa Souza, Matthias Wilms, Milton Camacho, G. Bruce Pike, Richard Camicioli, Oury Monchi, Nils D. Forkert:
Image-encoded biological and non-biological variables may be used as shortcuts in deep learning models trained on multisite neuroimaging data. J. Am. Medical Informatics Assoc. 30(12): 1925-1933 (2023) - [j22]Jasmine A. Moore, Anup Tuladhar, Zahinoor Ismail, Pauline Mouches, Matthias Wilms, Nils D. Forkert:
Dementia in Convolutional Neural Networks: Using Deep Learning Models to Simulate Neurodegeneration of the Visual System. Neuroinformatics 21(1): 45-55 (2023) - [c58]Raissa Souza, Emma A. M. Stanley, Nils D. Forkert:
On the Relationship Between Open Science in Artificial Intelligence for Medical Imaging and Global Health Equity. CLIP/FAIMI/EPIMI@MICCAI 2023: 289-300 - [c57]Raissa Souza, Emma A. M. Stanley, Milton Camacho, Matthias Wilms, Nils D. Forkert:
An analysis of intensity harmonization techniques for Parkinson's multi-site MRI datasets. Computer-Aided Diagnosis 2023 - [c56]Emma A. M. Stanley, Matthias Wilms, Nils D. Forkert:
A Flexible Framework for Simulating and Evaluating Biases in Deep Learning-Based Medical Image Analysis. MICCAI (2) 2023: 489-499 - [c55]Vibujithan Vigneshwaran, Matthias Wilms, Milton Ivan Camacho, Raissa Souza, Nils D. Forkert:
Improved multi-site Parkinson's disease classification using neuroimaging data with counterfactual inference. MIDL 2023: 1304-1317 - [i7]Emma A. M. Stanley, Raissa Souza, Anthony J. Winder, Vedant Gulve, Kimberly Amador, Matthias Wilms, Nils D. Forkert:
Towards objective and systematic evaluation of bias in medical imaging AI. CoRR abs/2311.02115 (2023) - 2022
- [j21]Lucas Lo Vercio, Rebecca M. Green, Samuel Robertson, Sienna Guo, Andreas Dauter, Marta Marchini, Marta Vidal-García, Xiang Zhao, Anandita Mahika, Ralph S. Marcucio, Benedikt Hallgrímsson, Nils D. Forkert:
Segmentation of Tissues and Proliferating Cells in Light-Sheet Microscopy Images of Mouse Embryos Using Convolutional Neural Networks. IEEE Access 10: 105084-105100 (2022) - [j20]Jordan J. Bannister, Matthias Wilms, J. David Aponte, David C. Katz, Ophir D. Klein, Francois P. J. Bernier, Richard A. Spritz, Benedikt Hallgrímsson, Nils D. Forkert:
Detecting 3D syndromic faces as outliers using unsupervised normalizing flow models. Artif. Intell. Medicine 134: 102425 (2022) - [j19]Hristina Uzunova, Matthias Wilms, Nils D. Forkert, Heinz Handels, Jan Ehrhardt:
A systematic comparison of generative models for medical images. Int. J. Comput. Assist. Radiol. Surg. 17(7): 1213-1224 (2022) - [j18]Raissa Souza, Pauline Mouches, Matthias Wilms, Anup Tuladhar, Sönke Langner, Nils D. Forkert:
An analysis of the effects of limited training data in distributed learning scenarios for brain age prediction. J. Am. Medical Informatics Assoc. 30(1): 112-119 (2022) - [j17]Kimberly Amador, Matthias Wilms, Anthony J. Winder, Jens Fiehler, Nils D. Forkert:
Predicting treatment-specific lesion outcomes in acute ischemic stroke from 4D CT perfusion imaging using spatio-temporal convolutional neural networks. Medical Image Anal. 82: 102610 (2022) - [j16]Matthias Wilms, Jan Ehrhardt, Nils D. Forkert:
Localized Statistical Shape Models for Large-Scale Problems With Few Training Data. IEEE Trans. Biomed. Eng. 69(9): 2947-2957 (2022) - [j15]Jordan J. Bannister, Matthias Wilms, J. David Aponte, David C. Katz, Ophir D. Klein, Francois P. J. Bernier, Richard A. Spritz, Benedikt Hallgrímsson, Nils D. Forkert:
A Deep Invertible 3-D Facial Shape Model for Interpretable Genetic Syndrome Diagnosis. IEEE J. Biomed. Health Informatics 26(7): 3229-3239 (2022) - [j14]Matthias Wilms, Jordan J. Bannister, Pauline Mouches, M. Ethan MacDonald, Deepthi Rajashekar, Sönke Langner, Nils D. Forkert:
Invertible Modeling of Bidirectional Relationships in Neuroimaging With Normalizing Flows: Application to Brain Aging. IEEE Trans. Medical Imaging 41(9): 2331-2347 (2022) - [c54]Gabrielle Dagasso, Matthias Wilms, Nils D. Forkert:
A morphometrics approach for inclusion of localised characteristics from medical imaging studies into genome-wide association studies. BIBM 2022: 3622-3628 - [c53]Anup Tuladhar, Jasmine A. Moore, Zahinoor Ismail, Nils D. Forkert:
Simulating progressive neurodegeneration in silico with deep artificial neural networks. CogSci 2022 - [c52]Banafshe Felfeliyan, Abhilash Rakkunedeth Hareendranathan, Gregor Kuntze, Stephanie Wichuk, Nils D. Forkert, Jacob L. Jaremko, Janet Lenore Ronsky:
Weakly Supervised Medical Image Segmentation with Soft Labels and Noise Robust Loss. ICPR Workshops (2) 2022: 603-617 - [c51]Alejandro Gutierrez, Anup Tuladhar, Deepthi Rajashekar, Nils D. Forkert:
Lesion-preserving unpaired image-to-image translation between MRI and CT from ischemic stroke patients. Computer-Aided Diagnosis 2022 - [c50]Samuel Robertson, Anup Tuladhar, Deepthi Rajashekar, Nils D. Forkert:
Stroke lesion localization in 3D MRI datasets with deep reinforcement learning. Computer-Aided Diagnosis 2022 - [c49]Emma A. M. Stanley, Deepthi Rajashekar, Pauline Mouches, Matthias Wilms, Kira Plettl, Nils D. Forkert:
A fully convolutional neural network for explainable classification of attention deficit hyperactivity disorder. Computer-Aided Diagnosis 2022 - [c48]Emma A. M. Stanley, Matthias Wilms, Nils D. Forkert:
Disproportionate Subgroup Impacts and Other Challenges of Fairness in Artificial Intelligence for Medical Image Analysis. EPIMI/ML-CDS@MICCAI 2022: 14-25 - [c47]Matthias Wilms, Pauline Mouches, Jordan J. Bannister, Sönke Langner, Nils D. Forkert:
Disentangling Factors of Morphological Variation in an Invertible Brain Aging Model. MAD@MICCAI 2022: 95-107 - [c46]Christopher Nielsen, Anup Tuladhar, Nils D. Forkert:
Investigating the Vulnerability of Federated Learning-Based Diabetic Retinopathy Grade Classification to Gradient Inversion Attacks. OMIA@MICCAI 2022: 183-192 - [c45]Kimberly Amador, Anthony J. Winder, Jens Fiehler, Matthias Wilms, Nils D. Forkert:
Hybrid Spatio-Temporal Transformer Network for Predicting Ischemic Stroke Lesion Outcomes from 4D CT Perfusion Imaging. MICCAI (3) 2022: 644-654 - [d1]Anup Tuladhar, Serena Schimert, Deepthi Rajashekar, Helge C. Kniep, Jens Fiehler, Nils D. Forkert:
Automatic Segmentation of Stroke Lesions in Non-contrast Computed Tomography Datasets with Convolutional Neural Networks. IEEE DataPort, 2022 - [i6]Banafshe Felfeliyan, Abhilash Rakkunedeth Hareendranathan, Gregor Kuntze, David Cornell, Nils D. Forkert, Jacob L. Jaremko, Janet Lenore Ronsky:
Self-Supervised-RCNN for Medical Image Segmentation with Limited Data Annotation. CoRR abs/2207.11191 (2022) - [i5]Banafshe Felfeliyan, Abhilash Rakkunedeth Hareendranathan, Gregor Kuntze, Stephanie Wichuk, Nils D. Forkert, Jacob L. Jaremko, Janet Lenore Ronsky:
Weakly Supervised Medical Image Segmentation With Soft Labels and Noise Robust Loss. CoRR abs/2209.08172 (2022) - 2021
- [j13]Anup Tuladhar, Jasmine A. Moore, Zahinoor Ismail, Nils D. Forkert:
Modeling Neurodegeneration in silico With Deep Learning. Frontiers Neuroinformatics 15: 748370 (2021) - [j12]Bryce A. Besler, Andrew S. Michalski, Michael T. Kuczynski, Aleena Abid, Nils D. Forkert, Steven K. Boyd:
Bone and joint enhancement filtering: Application to proximal femur segmentation from uncalibrated computed tomography datasets. Medical Image Anal. 67: 101887 (2021) - [j11]Samaneh Nobakht, Morgan Schaeffer, Nils D. Forkert, Sean M. Nestor, Sandra E. Black, Philip A. Barber, Alzheimer's Disease Neuroimaging Initiative:
Combined Atlas and Convolutional Neural Network-Based Segmentation of the Hippocampus from MRI According to the ADNI Harmonized Protocol. Sensors 21(7): 2427 (2021) - [j10]Nagesh Subbanna, Matthias Wilms, Anup Tuladhar, Nils D. Forkert:
An Analysis of the Vulnerability of Two Common Deep Learning-Based Medical Image Segmentation Techniques to Model Inversion Attacks. Sensors 21(11): 3874 (2021) - [c44]Hristina Uzunova, Jesse Kruse, Paul Kaftan, Matthias Wilms, Nils D. Forkert, Heinz Handels, Jan Ehrhardt:
Analysis of Generative Shape Modeling Approaches - Latent Space Properties and Interpretability. Bildverarbeitung für die Medizin 2021: 344-349 - [c43]Anup Tuladhar, Lakshay Tyagi, Raissa Souza, Nils D. Forkert:
Federated Learning Using Variable Local Training for Brain Tumor Segmentation. BrainLes@MICCAI (2) 2021: 392-404 - [c42]Raissa Souza, Anup Tuladhar, Pauline Mouches, Matthias Wilms, Lakshay Tyagi, Nils D. Forkert:
Multi-institutional Travelling Model for Tumor Segmentation in MRI Datasets. BrainLes@MICCAI (2) 2021: 420-432 - [c41]Matthias Wilms, Pauline Mouches, Jordan J. Bannister, Deepthi Rajashekar, Sönke Langner, Nils D. Forkert:
Towards Self-explainable Classifiers and Regressors in Neuroimaging with Normalizing Flows. MLCN@MICCAI 2021: 23-33 - [c40]Kimberly Amador, Matthias Wilms, Anthony J. Winder, Jens Fiehler, Nils D. Forkert:
Stroke Lesion Outcome Prediction Based on 4D CT Perfusion Data Using Temporal Convolutional Networks. MIDL 2021: 22-33 - [c39]Pauline Mouches, Matthias Wilms, Deepthi Rajashekar, Sönke Langner, Nils Daniel Forkert:
Unifying Brain Age Prediction and Age-Conditioned Template Generation with a Deterministic Autoencoder. MIDL 2021: 497-506 - [i4]Bryce A. Besler, Tannis D. Kemp, Andrew S. Michalski, Nils D. Forkert, Steven K. Boyd:
Local Morphometry of Closed, Implicit Surfaces. CoRR abs/2108.04354 (2021) - [i3]Bryce A. Besler, Tannis D. Kemp, Nils D. Forkert, Steven K. Boyd:
Constructing High-Order Signed Distance Maps from Computed Tomography Data with Application to Bone Morphometry. CoRR abs/2111.01350 (2021) - 2020
- [j9]Anup Tuladhar, Serena Schimert, Deepthi Rajashekar, Helge C. Kniep, Jens Fiehler, Nils D. Forkert:
Automatic Segmentation of Stroke Lesions in Non-Contrast Computed Tomography Datasets With Convolutional Neural Networks. IEEE Access 8: 94871-94879 (2020) - [j8]Anup Tuladhar, Sascha Gill, Zahinoor Ismail, Nils D. Forkert, Alzheimer's Disease Neuroimaging Initiative:
Building machine learning models without sharing patient data: A simulation-based analysis of distributed learning by ensembling. J. Biomed. Informatics 106: 103424 (2020) - [j7]Jordan J. Bannister, Sebastian Crites, J. David Aponte, David C. Katz, Matthias Wilms, Ophir D. Klein, Francois P. J. Bernier, Richard A. Spritz, Benedikt Hallgrímsson, Nils D. Forkert:
Fully Automatic Landmarking of Syndromic 3D Facial Surface Scans Using 2D Images. Sensors 20(11): 3171 (2020) - [j6]Renzo Phellan, Thomas Lindner, Michael Helle, Alexandre X. Falcão, Clarissa L. Yasuda, Magdalena J. Sokolska, Hans Rolf Jäger, Nils Daniel Forkert:
Segmentation-Based Blood Flow Parameter Refinement in Cerebrovascular Structures Using 4-D Arterial Spin Labeling MRA. IEEE Trans. Biomed. Eng. 67(7): 1936-1946 (2020) - [c38]Hristina Uzunova, Paul Kaftan, Matthias Wilms, Nils D. Forkert, Heinz Handels, Jan Ehrhardt:
Quantitative Comparison of Generative Shape Models for Medical Images. Bildverarbeitung für die Medizin 2020: 201-207 - [c37]Matthias Wilms, Jordan J. Bannister, Pauline Mouches, M. Ethan MacDonald, Deepthi Rajashekar, Sönke Langner, Nils D. Forkert:
Bidirectional Modeling and Analysis of Brain Aging with Normalizing Flows. MLCN/RNO-AI@MICCAI 2020: 23-33 - [c36]Matthias Wilms, Jan Ehrhardt, Nils D. Forkert:
A Kernelized Multi-level Localization Method for Flexible Shape Modeling with Few Training Data. MICCAI (4) 2020: 765-775 - [i2]Matthias Wilms, Jordan J. Bannister, Pauline Mouches, M. Ethan MacDonald, Deepthi Rajashekar, Sönke Langner, Nils D. Forkert:
Bidirectional Modeling and Analysis of Brain Aging with Normalizing Flows. CoRR abs/2011.13484 (2020)
2010 – 2019
- 2019
- [j5]Renzo Phellan, Thomas Lindner, Michael Helle, Alexandre X. Falcão, Thomas W. Okell, Nils D. Forkert:
A methodology for generating four-dimensional arterial spin labeling MR angiography virtual phantoms. Medical Image Anal. 56: 184-192 (2019) - [j4]Jonathan Doucette, Luxi Wei, Enedino Hernández-Torres, Christian Kames, Nils D. Forkert, Rasmus Aamand, Torben Ellegaard Lund, Brian Hansen, Alexander Rauscher:
Rapid solution of the Bloch-Torrey equation in anisotropic tissue: Application to dynamic susceptibility contrast MRI of cerebral white matter. NeuroImage 185: 198-207 (2019) - [c35]Renzo Phellan, Thomas Lindner, Michael Helle, Alexandre X. Falcão, Nils D. Forkert:
The Effect of Labeling Duration and Temporal Resolution on Arterial Transit Time Estimation Accuracy in 4D ASL MRA Datasets - A Flow Phantom Study. MLMECH/CVII-STENT@MICCAI 2019: 141-148 - 2018
- [j3]Renzo Phellan, Thomas Lindner, Michael Helle, Alexandre X. Falcão, Nils Daniel Forkert:
Automatic Temporal Segmentation of Vessels of the Brain Using 4D ASL MRA Images. IEEE Trans. Biomed. Eng. 65(7): 1486-1494 (2018) - [c34]Renzo Phellan, Thomas Lindner, Michael Helle, Alexandre X. Falcão, Nils Daniel Forkert:
Robust cerebrovascular segmentation in 4D ASL MRA images. ISBI 2018: 1348-1351 - [c33]Bryce A. Besler, Leigh Gabel, Lauren A. Burt, Nils Daniel Forkert, Steven K. Boyd:
Bone Adaptation as Level Set Motion. MSKI@MICCAI 2018: 58-72 - [c32]Renzo Phellan, Thomas Lindner, Michael Helle, Thiago Vallin Spina, Alexandre X. Falcão, Nils Daniel Forkert:
Four-Dimensional ASL MR Angiography Phantoms with Noise Learned by Neural Styling. CVII-STENT/LABELS@MICCAI 2018: 131-139 - [i1]Giles Tetteh, Velizar Efremov, Nils D. Forkert, Matthias Schneider, Jan Kirschke, Bruno Weber, Claus Zimmer, Marie Piraud, Bjoern H. Menze:
DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes. CoRR abs/1803.09340 (2018) - 2017
- [c31]René Werner, Daniel Schetelig, Thilo Sothmann, Eike Mücke, Matthias Wilms, Bastian Cheng, Nils Daniel Forkert:
Low Rank and Sparse Matrix Decomposition as Stroke Segmentation Prior: Useful or Not? A Random Forest-Based Evaluation Study. Bildverarbeitung für die Medizin 2017: 161-166 - [c30]Renzo Phellan, Thomas Lindner, Alexandre X. Falcão, Nils Daniel Forkert:
Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain. Computer-Aided Diagnosis 2017: 101341B - [c29]Sahand Talai, Kai Boelmans, Jan Sedlacik, Nils Daniel Forkert:
Automatic classification of patients with idiopathic Parkinson's disease and progressive supranuclear palsy using diffusion MRI datasets. Computer-Aided Diagnosis 2017: 101342H - [c28]Javier Villafruela, Sebastian Crites, Bastian Cheng, Christian Knaack, Götz Thomalla, Bijoy K. Menon, Nils Daniel Forkert:
Automatic classification of cardioembolic and arteriosclerotic ischemic strokes from apparent diffusion coefficient datasets using texture analysis and deep learning. Computer-Aided Diagnosis 2017: 101342K - [c27]Anthony J. Winder, Susanne Siemonsen, Fabian Flottmann, Jens Fiehler, Nils Daniel Forkert:
Comparison of classification methods for voxel-based prediction of acute ischemic stroke outcome following intra-arterial intervention. Computer-Aided Diagnosis 2017: 101344B - [c26]Renzo Phellan, Alan Peixinho, Alexandre X. Falcão, Nils Daniel Forkert:
Vascular Segmentation in TOF MRA Images of the Brain Using a Deep Convolutional Neural Network. CVII-STENT/LABELS@MICCAI 2017: 39-46 - [c25]Bryce A. Besler, Andrew S. Michalski, Nils Daniel Forkert, Steven K. Boyd:
Automatic Full Femur Segmentation from Computed Tomography Datasets Using an Atlas-Based Approach. MSKI@MICCAI 2017: 120-132 - 2016
- [c24]René Werner, Matthias Wilms, Bastian Cheng, Nils Daniel Forkert:
Beyond cost function masking: RPCA-based non-linear registration in the context of VLSM. PRNI 2016: 1-4 - 2015
- [j2]Nils Daniel Forkert:
Model-based analysis of cerebrovascular diseases combining 3D and 4D MRA datasets. it Inf. Technol. 57(3): 208-212 (2015) - [c23]Albrecht Kleinfeld, Oskar Maier, Nils Daniel Forkert, Heinz Handels:
Automatische Detektion von Okklusionen zerebraler Arterien in 3D-Magnetresonanzangiographiedaten. Bildverarbeitung für die Medizin 2015: 17-22 - [c22]Nils Daniel Forkert, Jens Fiehler:
Effect of sample size on multi-parametric prediction of tissue outcome in acute ischemic stroke using a random forest classifier. Biomedical Applications in Molecular, Structural, and Functional Imaging 2015: 94172H - 2013
- [b1]Nils Daniel Forkert:
Model-Based Analysis of Cerebrovascular Diseases Combining 3D and 4D MRA Datasets. University of Hamburg, 2013 - [j1]Nils Daniel Forkert, Till Illies, Einar Goebell, Jens Fiehler, Dennis Säring, Heinz Handels:
Computer-aided nidus segmentation and angiographic characterization of arteriovenous malformations. Int. J. Comput. Assist. Radiol. Surg. 8(5): 775-786 (2013) - [p1]Nils Daniel Forkert:
Modellbasierte Analyse zerebrovaskulärer Erkrankungen durch Kombination von 3D und 4D MRA Datensätzen. Ausgezeichnete Informatikdissertationen 2013: 31-40 - 2012
- [c21]Nils Daniel Forkert, Alexander Schmidt-Richberg, Alexander Münchau, Jens Fiehler, Heinz Handels, Kai Boelmans:
Automatische atlasbasierte Differenzierung von klassischen und atypischen Parkinsonsyndromen. Bildverarbeitung für die Medizin 2012: 225-230 - [c20]Santiago Suniaga, René Werner, Andre Kemmling, Michael Groth, Jens Fiehler, Nils Daniel Forkert:
Automatische Detektion von Aneurysmen in 3D Time-of-Flight Magnetresonanzangiographie Datensätzen. GI-Jahrestagung 2012: 1738-1744 - [c19]Santiago Suniaga, René Werner, Andre Kemmling, Michael Groth, Jens Fiehler, Nils Daniel Forkert:
Computer-Aided Detection of Aneurysms in 3D Time-of-Flight MRA Datasets. MLMI 2012: 63-69 - [c18]Nils Daniel Forkert, Santiago Suniaga, Jens Fiehler, Heike Wersching, Stefan Knecht, Andre Kemmling:
Generation of a Probabilistic Arterial Cerebrovascular Atlas Derived from 700 Time-of-Flight MRA Datasets. MIE 2012: 148-152 - 2011
- [c17]Nils Daniel Forkert, Alexander Schmidt-Richberg, Jan Ehrhardt, Jens Fiehler, Heinz Handels, Dennis Säring:
Vesselness-geführte Level-Set Segmentierung von zerebralen Gefäßen. Bildverarbeitung für die Medizin 2011: 8-12 - [c16]Tobias Verleger, Dennis Säring, Susanne Siemonsen, Jens Fiehler, Nils Daniel Forkert:
Segmentierung rekanalisierter Blutgefäße nach Lysetherapie unter Verwendung von Time-of-Flight MRA Datensätzen. GI-Jahrestagung 2011: 443 - [c15]Nils Daniel Forkert, Alexander Schmidt-Richberg, Brigitte Holst, Alexander Münchau, Heinz Handels, Kai Boelmans:
Image-based Classification of Parkinsonian Syndromes Using T2'-Atlases. MIE 2011: 465-469 - [c14]Nils Daniel Forkert, Dennis Säring, Till Illies, Jens Fiehler, Jan Ehrhardt, Heinz Handels, Alexander Schmidt-Richberg:
Direction-dependent level set segmentation of cerebrovascular structures. Image Processing 2011: 79623S - 2010
- [c13]Nils Daniel Forkert, Dennis Säring, Andrea Eisenbeis, Frank Leypoldt, Jens Fiehler, Heinz Handels:
Experimental Assessment of Infarct Lesion Growth in Mice using Time-Resolved T2* MR Image Sequences. Bildverarbeitung für die Medizin 2010: 330-334 - [c12]Nils Daniel Forkert, Alexander Schmidt-Richberg, Dennis Säring, Jens Fiehler, Till Illies, Dietmar P. F. Möller, Heinz Handels:
Graphen- und Level-Set-basierte Nachverarbeitung von 3D-Gefäßsegmentierungen. Bildverarbeitung für die Medizin 2010: 425-429 - [c11]Dennis Säring, Nils Daniel Forkert, Till Illies, Jens Fiehler, Heinz Handels:
Evaluation of Methods for Bolus Arrival Time Determination using a Four-dimensional MRA Flow Phantom. MedInfo 2010: 1263-1267 - [c10]Nils Daniel Forkert, Dennis Säring, Heinz Handels:
Automatic Analysis of the Anatomy of Arteriovenous Malformations using 3D and 4D MRA Image Sequences. MedInfo 2010: 1268-1272 - [c9]Nils Daniel Forkert, Alexander Schmidt-Richberg, Dennis Säring, Till Illies, Jens Fiehler, Heinz Handels:
Closing of interrupted vascular segmentations: an automatic approach based on shortest paths and level sets. Image Processing 2010: 76233G
2000 – 2009
- 2009
- [c8]Nils Daniel Forkert, Dennis Säring, Karolin Wenzel, Jens Fiehler, Till Illies, Dietmar P. F. Möller, Heinz Handels:
Automatische Segmentierung der zerebralen Gefäße aus 3D-TOF-MRA-Bildsequenzen mittels Fuzzy-Methoden. Bildverarbeitung für die Medizin 2009: 46-51 - [c7]Nils Daniel Forkert, Dennis Säring, Jens Fiehler, Till Illies, Heinz Handels:
AnToNIa: A Software Tool for the Hemodynamic Analysis of Cerebral Vascular Malformations Using 3D and 4D MRA Image Sequences. GI Jahrestagung 2009: 1249-1256 - [c6]Nils Daniel Forkert:
Analyse und dynamische 3D-Visualisierung des Blutflusses von zerebralen Gefäßstrukturen unter Verwendung von 3D- und 4D-Magnetresonanzangiographie-Bildfolgen. Informatiktage 2009: 223-226 - [c5]Nils Daniel Forkert, Dennis Säring, Karolin Wenzel, Till Illies, Jens Fiehler, Heinz Handels:
Fuzzy-Based Extraction of Vascular Structures from Time-of-Flight MR Images. MIE 2009: 816-820 - [c4]Nils Daniel Forkert, Dennis Säring, Jens Fiehler, Till Illies, Dietmar P. F. Möller, Heinz Handels:
Analysis and dynamic 3D visualization of cerebral blood flow combining 3D and 4D MR image sequences. Image-Guided Procedures 2009: 726133 - 2008
- [c3]Nils Daniel Forkert, Dennis Säring, Jens Fiehler, Till Illies, Heinz Handels:
Automatische Lokalisation und hämodynamische Charakterisierung von Gefäßstrukturen bei arteriovenösen Malformationen. Bildverarbeitung für die Medizin 2008: 107-111 - [c2]Nils Daniel Forkert, Dennis Säring, Jens Fiehler, Till Illies, Matthias Färber, Dietmar P. F. Möller, Heinz Handels:
Fully Automatic Skull-Stripping in 3D Time-of-Flight MRA Image Sequences. VCBM 2008: 159-165 - 2007
- [c1]Dennis Säring, Jens Fiehler, Nils Daniel Forkert, Milena Piening, Heinz Handels:
Visual Computing zur Analyse von zerebralen arteriovenösen Malformationen in 3D- und 4D-MR Bilddaten. Bildverarbeitung für die Medizin 2007: 262-266
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-09 13:19 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint