default search action
Matteo Riondato
Person information
- affiliation: Amherst College, MA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j17]Giulia Preti, Gianmarco De Francisci Morales, Matteo Riondato:
Alice and the Caterpillar: A more descriptive null model for assessing data mining results. Knowl. Inf. Syst. 66(3): 1917-1954 (2024) - [c31]Daniel Flores García, Hugo Flores García, Matteo Riondato:
ClaveNet: Generating Afro-Cuban Drum Patterns through Data Augmentation. Audio Mostly Conference 2024: 355-361 - [e2]Shashi Shekhar, Vagelis Papalexakis, Jing Gao, Zhe Jiang, Matteo Riondato:
Proceedings of the 2024 SIAM International Conference on Data Mining, SDM 2024, Houston, TX, USA, April 18-20, 2024. SIAM 2024, ISBN 978-1-61197-803-2 [contents] - [i11]Giulia Preti, Matteo Riondato, Aristides Gionis, Gianmarco De Francisci Morales:
Polaris: Sampling from the Multigraph Configuration Model with Prescribed Color Assortativity. CoRR abs/2409.01363 (2024) - 2023
- [j16]Maryam Abuissa, Alexander W. Lee, Matteo Riondato:
ROhAN: Row-order agnostic null models for statistically-sound knowledge discovery. Data Min. Knowl. Discov. 37(4): 1692-1718 (2023) - [j15]Giulia Preti, Gianmarco De Francisci Morales, Matteo Riondato:
MaNIACS: Approximate Mining of Frequent Subgraph Patterns through Sampling. ACM Trans. Intell. Syst. Technol. 14(3): 54:1-54:29 (2023) - [j14]Cyrus Cousins, Chloe Wohlgemuth, Matteo Riondato:
Bavarian: Betweenness Centrality Approximation with Variance-aware Rademacher Averages. ACM Trans. Knowl. Discov. Data 17(6): 78:1-78:47 (2023) - [c30]Matteo Riondato:
Statistically-Sound Knowledge Discovery from Data: Challenges and Directions. CogMI 2023: 97-102 - [c29]Matteo Riondato:
Statistically-sound Knowledge Discovery from Data. SDM 2023: 949-952 - [i10]Giulia Preti, Gianmarco De Francisci Morales, Matteo Riondato:
An impossibility result for Markov Chain Monte Carlo sampling from micro-canonical bipartite graph ensembles. CoRR abs/2308.10838 (2023) - 2022
- [j13]Steedman Jenkins, Stefan Walzer-Goldfeld, Matteo Riondato:
SPEck: mining statistically-significant sequential patterns efficiently with exact sampling. Data Min. Knowl. Discov. 36(4): 1575-1599 (2022) - [j12]Shahrzad Haddadan, Cristina Menghini, Matteo Riondato, Eli Upfal:
Reducing polarization and increasing diverse navigability in graphs by inserting edges and swapping edge weights. Data Min. Knowl. Discov. 36(6): 2334-2378 (2022) - [j11]Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato:
MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining. ACM Trans. Knowl. Discov. Data 16(6): 124:1-124:29 (2022) - [c28]Alexander W. Lee, Stefan Walzer-Goldfeld, Shukry Zablah, Matteo Riondato:
A Scalable Parallel Algorithm for Balanced Sampling (Student Abstract). AAAI 2022: 12991-12992 - [c27]Giulia Preti, Gianmarco De Francisci Morales, Matteo Riondato:
Alice and the Caterpillar: A More Descriptive Null Model for Assessing Data Mining Results. ICDM 2022: 418-427 - [e1]Arindam Banerjee, Zhi-Hua Zhou, Evangelos E. Papalexakis, Matteo Riondato:
Proceedings of the 2022 SIAM International Conference on Data Mining, SDM 2022, Alexandria, VA, USA, April 28-30, 2022. SIAM 2022, ISBN 978-1-61197-717-2 [contents] - 2021
- [j10]Muhammad Anis Uddin Nasir, Çigdem Aslay, Gianmarco De Francisci Morales, Matteo Riondato:
TipTap: Approximate Mining of Frequent k-Subgraph Patterns in Evolving Graphs. ACM Trans. Knowl. Discov. Data 15(3): 48:1-48:35 (2021) - [c26]Cyrus Cousins, Chloe Wohlgemuth, Matteo Riondato:
Bavarian: Betweenness Centrality Approximation with Variance-Aware Rademacher Averages. KDD 2021: 196-206 - [c25]Giulia Preti, Gianmarco De Francisci Morales, Matteo Riondato:
MaNIACS: Approximate Mining of Frequent Subgraph Patterns through Sampling. KDD 2021: 1348-1358 - [c24]Shahrzad Haddadan, Cristina Menghini, Matteo Riondato, Eli Upfal:
RePBubLik: Reducing Polarized Bubble Radius with Link Insertions. WSDM 2021: 139-147 - [i9]Shahrzad Haddadan, Cristina Menghini, Matteo Riondato, Eli Upfal:
RePBubLik: Reducing the Polarized Bubble Radius with Link Insertions. CoRR abs/2101.04751 (2021) - 2020
- [j9]Sacha Servan-Schreiber, Matteo Riondato, Emanuel Zgraggen:
ProSecCo: progressive sequence mining with convergence guarantees. Knowl. Inf. Syst. 62(4): 1313-1340 (2020) - [j8]Matteo Riondato, Fabio Vandin:
MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension. ACM Trans. Knowl. Discov. Data 14(5): 56:1-56:31 (2020) - [c23]Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato:
MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining. KDD 2020: 2165-2174 - [c22]Cyrus Cousins, Matteo Riondato:
Sharp uniform convergence bounds through empirical centralization. NeurIPS 2020 - [i8]Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato:
MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining. CoRR abs/2006.09085 (2020)
2010 – 2019
- 2019
- [j7]Cyrus Cousins, Matteo Riondato:
CaDET: interpretable parametric conditional density estimation with decision trees and forests. Mach. Learn. 108(8-9): 1613-1634 (2019) - [c21]Leonardo Pellegrina, Matteo Riondato, Fabio Vandin:
SPuManTE: Significant Pattern Mining with Unconditional Testing. KDD 2019: 1528-1538 - [c20]Leonardo Pellegrina, Matteo Riondato, Fabio Vandin:
Hypothesis Testing and Statistically-sound Pattern Mining. KDD 2019: 3215-3216 - 2018
- [j6]Matteo Riondato, Eli Upfal:
ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages. ACM Trans. Knowl. Discov. Data 12(5): 61:1-61:38 (2018) - [c19]Sacha Servan-Schreiber, Matteo Riondato, Emanuel Zgraggen:
ProSecCo: Progressive Sequence Mining with Convergence Guarantees. ICDM 2018: 417-426 - [c18]Matteo Riondato, Fabio Vandin:
MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension. KDD 2018: 2130-2139 - 2017
- [j5]Matteo Riondato, David García-Soriano, Francesco Bonchi:
Graph summarization with quality guarantees. Data Min. Knowl. Discov. 31(2): 314-349 (2017) - [j4]Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, Eli Upfal:
TRIÈST: Counting Local and Global Triangles in Fully Dynamic Streams with Fixed Memory Size. ACM Trans. Knowl. Discov. Data 11(4): 43:1-43:50 (2017) - 2016
- [j3]Matteo Riondato, Evgenios M. Kornaropoulos:
Fast approximation of betweenness centrality through sampling. Data Min. Knowl. Discov. 30(2): 438-475 (2016) - [c17]Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, Eli Upfal:
TRIÈST: Counting Local and Global Triangles in Fully-Dynamic Streams with Fixed Memory Size. KDD 2016: 825-834 - [c16]Matteo Riondato, Eli Upfal:
ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages. KDD 2016: 1145-1154 - [c15]Ahmad Mahmoody, Matteo Riondato, Eli Upfal:
Wiggins: Detecting Valuable Information in Dynamic Networks Using Limited Resources. WSDM 2016: 677-686 - [c14]Francesco Bonchi, Gianmarco De Francisci Morales, Matteo Riondato:
Centrality Measures on Big Graphs: Exact, Approximated, and Distributed Algorithms. WWW (Companion Volume) 2016: 1017-1020 - [i7]Matteo Riondato, Eli Upfal:
ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages. CoRR abs/1602.05866 (2016) - [i6]Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, Eli Upfal:
TRIÈST: Counting Local and Global Triangles in Fully-dynamic Streams with Fixed Memory Size. CoRR abs/1602.07424 (2016) - 2015
- [c13]Matteo Riondato, Eli Upfal:
Mining Frequent Itemsets through Progressive Sampling with Rademacher Averages. KDD 2015: 1005-1014 - [c12]Matteo Riondato, Eli Upfal:
VC-Dimension and Rademacher Averages: From Statistical Learning Theory to Sampling Algorithms. KDD 2015: 2321-2322 - [c11]Aris Anagnostopoulos, Luca Becchetti, Adriano Fazzone, Ida Mele, Matteo Riondato:
The Importance of Being Expert: Efficient Max-Finding in Crowdsourcing. SIGMOD Conference 2015: 983-998 - 2014
- [b1]Matteo Riondato:
Sampling-based Randomized Algorithms for Big Data Analytics. Brown University, USA, 2014 - [j2]Matteo Riondato, Eli Upfal:
Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees. ACM Trans. Knowl. Discov. Data 8(4): 20:1-20:32 (2014) - [c10]Matteo Riondato, David García-Soriano, Francesco Bonchi:
Graph Summarization with Quality Guarantees. ICDM 2014: 947-952 - [c9]Matteo Riondato:
Sampling-Based Data Mining Algorithms: Modern Techniques and Case Studies. ECML/PKDD (3) 2014: 516-519 - [c8]Matteo Riondato, Fabio Vandin:
Finding the True Frequent Itemsets. SDM 2014: 497-505 - [c7]Matteo Riondato, Evgenios M. Kornaropoulos:
Fast approximation of betweenness centrality through sampling. WSDM 2014: 413-422 - 2013
- [i5]Matteo Riondato, Fabio Vandin:
Controlling False Positives in Frequent Itemsets Mining through the VC-Dimension. CoRR abs/1301.1218 (2013) - 2012
- [c6]Matteo Riondato, Justin A. DeBrabant, Rodrigo Fonseca, Eli Upfal:
PARMA: a parallel randomized algorithm for approximate association rules mining in MapReduce. CIKM 2012: 85-94 - [c5]Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, Stanley B. Zdonik:
Learning-based Query Performance Modeling and Prediction. ICDE 2012: 390-401 - [c4]Andrea Pietracaprina, Geppino Pucci, Matteo Riondato, Francesco Silvestri, Eli Upfal:
Space-round tradeoffs for MapReduce computations. ICS 2012: 235-244 - [c3]Matteo Riondato, Eli Upfal:
Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees. ECML/PKDD (1) 2012: 25-41 - 2011
- [c2]Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, Stanley B. Zdonik:
The Case for Predictive Database Systems: Opportunities and Challenges. CIDR 2011: 167-174 - [c1]Matteo Riondato, Mert Akdere, Ugur Çetintemel, Stanley B. Zdonik, Eli Upfal:
The VC-Dimension of SQL Queries and Selectivity Estimation through Sampling. ECML/PKDD (2) 2011: 661-676 - [i4]Matteo Riondato, Mert Akdere, Ugur Çetintemel, Stanley B. Zdonik, Eli Upfal:
The VC-Dimension of Queries and Selectivity Estimation Through Sampling. CoRR abs/1101.5805 (2011) - [i3]Andrea Pietracaprina, Geppino Pucci, Matteo Riondato, Francesco Silvestri, Eli Upfal:
Space-Round Tradeoffs for MapReduce Computations. CoRR abs/1111.2228 (2011) - [i2]Matteo Riondato, Eli Upfal:
Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees. CoRR abs/1111.6937 (2011) - 2010
- [j1]Andrea Pietracaprina, Matteo Riondato, Eli Upfal, Fabio Vandin:
Mining top-K frequent itemsets through progressive sampling. Data Min. Knowl. Discov. 21(2): 310-326 (2010) - [i1]Andrea Pietracaprina, Matteo Riondato, Eli Upfal, Fabio Vandin:
Mining Top-K Frequent Itemsets Through Progressive Sampling. CoRR abs/1006.5235 (2010)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:10 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint