default search action
Sercan Ö. Arik
Person information
- unicode name: Sercan Ö. Arık
- affiliation: Google Cloud AI, Sunnyvale, CA, USA
- affiliation (PhD 2016): Stanford University, Department of Electrical Engineering, CA, USA
- affiliation: Bilkent University, Depertment of Electrical and Electronics Engineering, Ankara, Turkey
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j16]Jiefeng Chen, Jinsung Yoon, Sayna Ebrahimi, Sercan Ö. Arik, Somesh Jha, Tomas Pfister:
ASPEST: Bridging the Gap Between Active Learning and Selective Prediction. Trans. Mach. Learn. Res. 2024 (2024) - [j15]Zachary Izzo, Jinsung Yoon, Sercan Ö. Arik, James Zou:
Provable Membership Inference Privacy. Trans. Mach. Learn. Res. 2024 (2024) - [c39]Jinsung Yoon, Yanfei Chen, Sercan Ö. Arik, Tomas Pfister:
Search-Adaptor: Embedding Customization for Information Retrieval. ACL (1) 2024: 12230-12247 - [c38]James Enouen, Hootan Nakhost, Sayna Ebrahimi, Sercan Ö. Arik, Yan Liu, Tomas Pfister:
TextGenSHAP: Scalable Post-Hoc Explanations in Text Generation with Long Documents. ACL (Findings) 2024: 13984-14011 - [c37]Jinsung Yoon, Rajarishi Sinha, Sercan Ömer Arik, Tomas Pfister:
Matryoshka-Adaptor: Unsupervised and Supervised Tuning for Smaller Embedding Dimensions. EMNLP 2024: 10318-10336 - [c36]Defu Cao, Furong Jia, Sercan Ö. Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, Yan Liu:
TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting. ICLR 2024 - [c35]Sungwon Han, Jinsung Yoon, Sercan Ö. Arik, Tomas Pfister:
Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning. ICML 2024 - [c34]Xi Ye, Ruoxi Sun, Sercan Ö. Arik, Tomas Pfister:
Effective Large Language Model Adaptation for Improved Grounding and Citation Generation. NAACL-HLT 2024: 6237-6251 - [i64]Sungwon Han, Jinsung Yoon, Sercan Ö. Arik, Tomas Pfister:
Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning. CoRR abs/2404.09491 (2024) - [i63]Pritam Sarkar, Sayna Ebrahimi, Ali Etemad, Ahmad Beirami, Sercan Ö. Arik, Tomas Pfister:
Mitigating Object Hallucination via Data Augmented Contrastive Tuning. CoRR abs/2405.18654 (2024) - [i62]Maximillian Chen, Ruoxi Sun, Sercan Ö. Arik, Tomas Pfister:
Learning to Clarify: Multi-turn Conversations with Action-Based Contrastive Self-Training. CoRR abs/2406.00222 (2024) - [i61]Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, Sercan Ö. Arik:
Chain of Agents: Large Language Models Collaborating on Long-Context Tasks. CoRR abs/2406.02818 (2024) - [i60]Yihe Dong, Sercan Ö. Arik, Nathanael C. Yoder, Tomas Pfister:
Learned Feature Importance Scores for Automated Feature Engineering. CoRR abs/2406.04153 (2024) - [i59]Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Sercan Ö. Arik:
Teach Better or Show Smarter? On Instructions and Exemplars in Automatic Prompt Optimization. CoRR abs/2406.15708 (2024) - [i58]Hongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi, Niklas Muennighoff, Han-yu Wang, Haisu Liu, Quan Shi, Zachary S. Siegel, Michael Tang, Ruoxi Sun, Jinsung Yoon, Sercan Ö. Arik, Danqi Chen, Tao Yu:
BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval. CoRR abs/2407.12883 (2024) - [i57]Jinsung Yoon, Rajarishi Sinha, Sercan Ö. Arik, Tomas Pfister:
Matryoshka-Adaptor: Unsupervised and Supervised Tuning for Smaller Embedding Dimensions. CoRR abs/2407.20243 (2024) - [i56]Sayna Ebrahimi, Sercan Ö. Arik, Tejas Nama, Tomas Pfister:
CROME: Cross-Modal Adapters for Efficient Multimodal LLM. CoRR abs/2408.06610 (2024) - [i55]Mohammadreza Pourreza, Ruoxi Sun, Hailong Li, Lesly Miculicich, Tomas Pfister, Sercan Ö. Arik:
SQL-GEN: Bridging the Dialect Gap for Text-to-SQL Via Synthetic Data And Model Merging. CoRR abs/2408.12733 (2024) - [i54]Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, Sercan Ö. Arik:
CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Selection in Text-to-SQL. CoRR abs/2410.01943 (2024) - [i53]Bowen Jin, Jinsung Yoon, Jiawei Han, Sercan Ö. Arik:
Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG. CoRR abs/2410.05983 (2024) - [i52]Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen, Sercan Ö. Arik:
Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models. CoRR abs/2410.07176 (2024) - 2023
- [j14]Jinsung Yoon, Michel J. Mizrahi, Nahid Farhady Ghalaty, Thomas Jarvinen, Ashwin S. Ravi, Peter Brune, Fanyu Kong, Dave Anderson, George Lee, Arie Meir, Farhana Bandukwala, Elli Kanal, Sercan Ö. Arik, Tomas Pfister:
EHR-Safe: generating high-fidelity and privacy-preserving synthetic electronic health records. npj Digit. Medicine 6 (2023) - [j13]Si-An Chen, Chun-Liang Li, Sercan Ö. Arik, Nathanael C. Yoder, Tomas Pfister:
TSMixer: An All-MLP Architecture for Time Series Forecast-ing. Trans. Mach. Learn. Res. 2023 (2023) - [j12]Sayna Ebrahimi, Sercan Ö. Arik, Tomas Pfister:
Test-Time Adaptation for Visual Document Understanding. Trans. Mach. Learn. Res. 2023 (2023) - [j11]Yunhao Ge, Sercan Ö. Arik, Jinsung Yoon, Ao Xu, Laurent Itti, Tomas Pfister:
Invariant Structure Learning for Better Generalization and Causal Explainability. Trans. Mach. Learn. Res. 2023 (2023) - [j10]Aya Abdelsalam Ismail, Sercan Ö. Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, Tomas Pfister:
Interpretable Mixture of Experts. Trans. Mach. Learn. Res. 2023 (2023) - [j9]Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan Ö. Arik, Tomas Pfister:
SPADE: Semi-supervised Anomaly Detection under Distribution Mismatch. Trans. Mach. Learn. Res. 2023 (2023) - [c33]Ruoxi Sun, Chun-Liang Li, Sercan Ö. Arik, Michael W. Dusenberry, Chen-Yu Lee, Tomas Pfister:
Neural Spline Search for Quantile Probabilistic Modeling. AAAI 2023: 9927-9934 - [c32]Xingchen Wan, Ruoxi Sun, Hanjun Dai, Sercan Ö. Arik, Tomas Pfister:
Better Zero-Shot Reasoning with Self-Adaptive Prompting. ACL (Findings) 2023: 3493-3514 - [c31]Ruoxi Sun, Sercan Ö. Arik, Rajarishi Sinha, Hootan Nakhost, Hanjun Dai, Pengcheng Yin, Tomas Pfister:
SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data. EMNLP (Findings) 2023: 542-550 - [c30]Jiefeng Chen, Jinsung Yoon, Sayna Ebrahimi, Sercan Ö. Arik, Tomas Pfister, Somesh Jha:
Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs. EMNLP (Findings) 2023: 5190-5213 - [c29]Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Hanjun Dai, Julian Eisenschlos, Sercan Ö. Arik, Tomas Pfister:
Universal Self-Adaptive Prompting. EMNLP 2023: 7437-7462 - [c28]Rui Wang, Yihe Dong, Sercan Ö. Arik, Rose Yu:
Koopman Neural Operator Forecaster for Time-series with Temporal Distributional Shifts. ICLR 2023 - [c27]Chun-Hao Chang, Jinsung Yoon, Sercan Ö. Arik, Madeleine Udell, Tomas Pfister:
Data-Efficient and Interpretable Tabular Anomaly Detection. KDD 2023: 190-201 - [i51]Ruoxi Sun, Chun-Liang Li, Sercan Ö. Arik, Michael W. Dusenberry, Chen-Yu Lee, Tomas Pfister:
Neural Spline Search for Quantile Probabilistic Modeling. CoRR abs/2301.04857 (2023) - [i50]Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan Ö. Arik, Tomas Pfister:
TSMixer: An all-MLP Architecture for Time Series Forecasting. CoRR abs/2303.06053 (2023) - [i49]Yihe Dong, Sercan Ö. Arik:
SLM: End-to-end Feature Selection via Sparse Learnable Masks. CoRR abs/2304.03202 (2023) - [i48]Jiefeng Chen, Jinsung Yoon, Sayna Ebrahimi, Sercan Ö. Arik, Somesh Jha, Tomas Pfister:
ASPEST: Bridging the Gap Between Active Learning and Selective Prediction. CoRR abs/2304.03870 (2023) - [i47]Xingchen Wan, Ruoxi Sun, Hanjun Dai, Sercan Ö. Arik, Tomas Pfister:
Better Zero-Shot Reasoning with Self-Adaptive Prompting. CoRR abs/2305.14106 (2023) - [i46]Xingchen Wan, Ruoxi Sun, Hootan Nakhost, Hanjun Dai, Julian Martin Eisenschlos, Sercan Ö. Arik, Tomas Pfister:
Universal Self-adaptive Prompting. CoRR abs/2305.14926 (2023) - [i45]Sayna Ebrahimi, Sercan Ö. Arik, Yihe Dong, Tomas Pfister:
LANISTR: Multimodal Learning from Structured and Unstructured Data. CoRR abs/2305.16556 (2023) - [i44]Ruoxi Sun, Sercan Ö. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin, Tomas Pfister:
SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL. CoRR abs/2306.00739 (2023) - [i43]Helen Zhou, Sercan Ö. Arik, Jingtao Wang:
Business Metric-Aware Forecasting for Inventory Management. CoRR abs/2308.13118 (2023) - [i42]Nicasia Beebe-Wang, Sayna Ebrahimi, Jinsung Yoon, Sercan Ö. Arik, Tomas Pfister:
PAITS: Pretraining and Augmentation for Irregularly-Sampled Time Series. CoRR abs/2308.13703 (2023) - [i41]Defu Cao, Furong Jia, Sercan Ö. Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, Yan Liu:
TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting. CoRR abs/2310.04948 (2023) - [i40]Jinsung Yoon, Sercan Ö. Arik, Yanfei Chen, Tomas Pfister:
Search-Adaptor: Text Embedding Customization for Information Retrieval. CoRR abs/2310.08750 (2023) - [i39]Jiefeng Chen, Jinsung Yoon, Sayna Ebrahimi, Sercan Ö. Arik, Tomas Pfister, Somesh Jha:
Adaptation with Self-Evaluation to Improve Selective Prediction in LLMs. CoRR abs/2310.11689 (2023) - [i38]Chuizheng Meng, Yihe Dong, Sercan Ö. Arik, Yan Liu, Tomas Pfister:
COSTAR: Improved Temporal Counterfactual Estimation with Self-Supervised Learning. CoRR abs/2311.00886 (2023) - [i37]Ruoxi Sun, Sercan Ö. Arik, Rajarishi Sinha, Hootan Nakhost, Hanjun Dai, Pengcheng Yin, Tomas Pfister:
SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data. CoRR abs/2311.02883 (2023) - [i36]Xi Ye, Ruoxi Sun, Sercan Ö. Arik, Tomas Pfister:
Effective Large Language Model Adaptation for Improved Grounding. CoRR abs/2311.09533 (2023) - [i35]James Enouen, Hootan Nakhost, Sayna Ebrahimi, Sercan Ö. Arik, Yan Liu, Tomas Pfister:
TextGenSHAP: Scalable Post-hoc Explanations in Text Generation with Long Documents. CoRR abs/2312.01279 (2023) - 2022
- [j8]Thomas C. Tsai, Sercan Ö. Arik, Benjamin H. Jacobson, Jinsung Yoon, Nate Yoder, Dario Sava, Margaret Mitchell, Garth Graham, Tomas Pfister:
Algorithmic fairness in pandemic forecasting: lessons from COVID-19. npj Digit. Medicine 5 (2022) - [j7]Jinsung Yoon, Sercan Ö. Arik, Tomas Pfister:
LIMIS: Locally Interpretable Modeling using Instance-wise Subsampling. Trans. Mach. Learn. Res. 2022 (2022) - [j6]Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan Ö. Arik, Chen-Yu Lee, Tomas Pfister:
Self-supervise, Refine, Repeat: Improving Unsupervised Anomaly Detection. Trans. Mach. Learn. Res. 2022 (2022) - [c26]Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö. Arik, Tomas Pfister:
Nested Hierarchical Transformer: Towards Accurate, Data-Efficient and Interpretable Visual Understanding. AAAI 2022: 3417-3425 - [c25]Sana Tonekaboni, Chun-Liang Li, Sercan Ö. Arik, Anna Goldenberg, Tomas Pfister:
Decoupling Local and Global Representations of Time Series. AISTATS 2022: 8700-8714 - [c24]Serdar Ozsoy, Shadi Hamdan, Sercan Ö. Arik, Deniz Yuret, Alper T. Erdogan:
Self-Supervised Learning with an Information Maximization Criterion. NeurIPS 2022 - [i34]Sana Tonekaboni, Chun-Liang Li, Sercan Ö. Arik, Anna Goldenberg, Tomas Pfister:
Decoupling Local and Global Representations of Time Series. CoRR abs/2202.02262 (2022) - [i33]Sercan Ö. Arik, Nathanael C. Yoder, Tomas Pfister:
Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary Time-Series. CoRR abs/2202.02403 (2022) - [i32]Chun-Hao Chang, Jinsung Yoon, Sercan Ö. Arik, Madeleine Udell, Tomas Pfister:
Data-Efficient and Interpretable Tabular Anomaly Detection. CoRR abs/2203.02034 (2022) - [i31]Aya Abdelsalam Ismail, Sercan Ö. Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, Tomas Pfister:
Interpretable Mixture of Experts for Structured Data. CoRR abs/2206.02107 (2022) - [i30]Yunhao Ge, Sercan Ö. Arik, Jinsung Yoon, Ao Xu, Laurent Itti, Tomas Pfister:
Invariant Structure Learning for Better Generalization and Causal Explainability. CoRR abs/2206.06469 (2022) - [i29]Sayna Ebrahimi, Sercan Ö. Arik, Tomas Pfister:
Test-Time Adaptation for Visual Document Understanding. CoRR abs/2206.07240 (2022) - [i28]Serdar Ozsoy, Shadi Hamdan, Sercan Ö. Arik, Deniz Yuret, Alper T. Erdogan:
Self-Supervised Learning with an Information Maximization Criterion. CoRR abs/2209.07999 (2022) - [i27]Rui Wang, Yihe Dong, Sercan Ö. Arik, Rose Yu:
Koopman Neural Forecaster for Time Series with Temporal Distribution Shifts. CoRR abs/2210.03675 (2022) - [i26]Zachary Izzo, Jinsung Yoon, Sercan Ö. Arik, James Zou:
Provable Membership Inference Privacy. CoRR abs/2211.06582 (2022) - [i25]Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan Ö. Arik, Tomas Pfister:
SPADE: Semi-supervised Anomaly Detection under Distribution Mismatch. CoRR abs/2212.00173 (2022) - 2021
- [j5]Sercan Ö. Arik, Joel Shor, Rajarishi Sinha, Jinsung Yoon, Joseph R. Ledsam, Long T. Le, Michael W. Dusenberry, Nathanael C. Yoder, Kris Popendorf, Arkady Epshteyn, Johan Euphrosine, Elli Kanal, Isaac Jones, Chun-Liang Li, Beth Luan, Joe Mckenna, Vikas Menon, Shashank Singh, Mimi Sun, Ashwin Sura Ravi, Leyou Zhang, Dario Sava, Kane Cunningham, Hiroki Kayama, Thomas C. Tsai, Daisuke Yoneoka, Shuhei Nomura, Hiroaki Miyata, Tomas Pfister:
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan. npj Digit. Medicine 4 (2021) - [c23]Sercan Ö. Arik, Tomas Pfister:
TabNet: Attentive Interpretable Tabular Learning. AAAI 2021: 6679-6687 - [c22]Sungyong Seo, Sercan Ö. Arik, Jinsung Yoon, Xiang Zhang, Kihyuk Sohn, Tomas Pfister:
Controlling Neural Networks with Rule Representations. NeurIPS 2021: 11196-11207 - [i24]Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan Ö. Arik, Chen-Yu Lee, Tomas Pfister:
Self-Trained One-class Classification for Unsupervised Anomaly Detection. CoRR abs/2106.06115 (2021) - [i23]Sungyong Seo, Sercan Ö. Arik, Jinsung Yoon, Xiang Zhang, Kihyuk Sohn, Tomas Pfister:
Controlling Neural Networks with Rule Representations. CoRR abs/2106.07804 (2021) - 2020
- [j4]Sercan Ömer Arik, Tomas Pfister:
ProtoAttend: Attention-Based Prototypical Learning. J. Mach. Learn. Res. 21: 210:1-210:35 (2020) - [c21]Zizhao Zhang, Han Zhang, Sercan Ömer Arik, Honglak Lee, Tomas Pfister:
Distilling Effective Supervision From Severe Label Noise. CVPR 2020: 9291-9300 - [c20]Linchao Zhu, Sercan Ömer Arik, Yi Yang, Tomas Pfister:
Learning to Transfer Learn: Reinforcement Learning-Based Selection for Adaptive Transfer Learning. ECCV (27) 2020: 342-358 - [c19]Mingfei Gao, Zizhao Zhang, Guo Yu, Sercan Ömer Arik, Larry S. Davis, Tomas Pfister:
Consistency-Based Semi-supervised Active Learning: Towards Minimizing Labeling Cost. ECCV (10) 2020: 510-526 - [c18]Chen Xing, Sercan Ömer Arik, Zizhao Zhang, Tomas Pfister:
Distance-Based Learning from Errors for Confidence Calibration. ICLR 2020 - [c17]Jinsung Yoon, Sercan Ömer Arik, Tomas Pfister:
Data Valuation using Reinforcement Learning. ICML 2020: 10842-10851 - [c16]Sercan Ömer Arik, Chun-Liang Li, Jinsung Yoon, Rajarishi Sinha, Arkady Epshteyn, Long T. Le, Vikas Menon, Shashank Singh, Leyou Zhang, Martin Nikoltchev, Yash Sonthalia, Hootan Nakhost, Elli Kanal, Tomas Pfister:
Interpretable Sequence Learning for Covid-19 Forecasting. NeurIPS 2020 - [c15]Chih-Kuan Yeh, Been Kim, Sercan Ömer Arik, Chun-Liang Li, Tomas Pfister, Pradeep Ravikumar:
On Completeness-aware Concept-Based Explanations in Deep Neural Networks. NeurIPS 2020 - [i22]Yu-Han Liu, Sercan Ö. Arik:
Explaining Deep Neural Networks using Unsupervised Clustering. CoRR abs/2007.07477 (2020) - [i21]Sercan Ömer Arik, Chun-Liang Li, Jinsung Yoon, Rajarishi Sinha, Arkady Epshteyn, Long T. Le, Vikas Menon, Shashank Singh, Leyou Zhang, Nate Yoder, Martin Nikoltchev, Yash Sonthalia, Hootan Nakhost, Elli Kanal, Tomas Pfister:
Interpretable Sequence Learning for COVID-19 Forecasting. CoRR abs/2008.00646 (2020)
2010 – 2019
- 2019
- [j3]Sercan Ömer Arik, Heewoo Jun, Gregory Frederick Diamos:
Fast Spectrogram Inversion Using Multi-Head Convolutional Neural Networks. IEEE Signal Process. Lett. 26(1): 94-98 (2019) - [i20]Sercan Ömer Arik, Tomas Pfister:
Attention-Based Prototypical Learning Towards Interpretable, Confident and Robust Deep Neural Networks. CoRR abs/1902.06292 (2019) - [i19]Yanqi Zhou, Peng Wang, Sercan Ömer Arik, Haonan Yu, Syed Zawad, Feng Yan, Greg Diamos:
EPNAS: Efficient Progressive Neural Architecture Search. CoRR abs/1907.04648 (2019) - [i18]Sercan Ömer Arik, Tomas Pfister:
TabNet: Attentive Interpretable Tabular Learning. CoRR abs/1908.07442 (2019) - [i17]Linchao Zhu, Sercan Ömer Arik, Yi Yang, Tomas Pfister:
Learning to Transfer Learn. CoRR abs/1908.11406 (2019) - [i16]Jinsung Yoon, Sercan Ömer Arik, Tomas Pfister:
Data Valuation using Reinforcement Learning. CoRR abs/1909.11671 (2019) - [i15]Jinsung Yoon, Sercan Ömer Arik, Tomas Pfister:
RL-LIM: Reinforcement Learning-based Locally Interpretable Modeling. CoRR abs/1909.12367 (2019) - [i14]Zizhao Zhang, Han Zhang, Sercan Ömer Arik, Honglak Lee, Tomas Pfister:
IEG: Robust Neural Network Training to Tackle Severe Label Noise. CoRR abs/1910.00701 (2019) - [i13]Mingfei Gao, Zizhao Zhang, Guo Yu, Sercan Ömer Arik, Larry S. Davis, Tomas Pfister:
Consistency-Based Semi-Supervised Active Learning: Towards Minimizing Labeling Cost. CoRR abs/1910.07153 (2019) - [i12]Chih-Kuan Yeh, Been Kim, Sercan Ömer Arik, Chun-Liang Li, Pradeep Ravikumar, Tomas Pfister:
On Concept-Based Explanations in Deep Neural Networks. CoRR abs/1910.07969 (2019) - [i11]Chen Xing, Sercan Ömer Arik, Zizhao Zhang, Tomas Pfister:
Distance-Based Learning from Errors for Confidence Calibration. CoRR abs/1912.01730 (2019) - [i10]Bryan Lim, Sercan Ömer Arik, Nicolas Loeff, Tomas Pfister:
Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting. CoRR abs/1912.09363 (2019) - 2018
- [j2]Alaelson C. Jatoba-Neto, Darli A. A. Mello, Christian Esteve Rothenberg, Sercan Ö. Arik, Joseph M. Kahn:
Scaling SDM Optical Networks Using Full-Spectrum Spatial Switching. JOCN 10(12): 991-1004 (2018) - [c14]Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan Ömer Arik, Ajay Kannan, Sharan Narang, Jonathan Raiman, John Miller:
Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning. ICLR (Poster) 2018 - [c13]Sercan Ömer Arik, Jitong Chen, Kainan Peng, Wei Ping, Yanqi Zhou:
Neural Voice Cloning with a Few Samples. NeurIPS 2018: 10040-10050 - [i9]Sercan Ömer Arik, Jitong Chen, Kainan Peng, Wei Ping, Yanqi Zhou:
Neural Voice Cloning with a Few Samples. CoRR abs/1802.06006 (2018) - [i8]Yanqi Zhou, Siavash Ebrahimi, Sercan Ömer Arik, Haonan Yu, Hairong Liu, Greg Diamos:
Resource-Efficient Neural Architect. CoRR abs/1806.07912 (2018) - [i7]Sercan Ömer Arik, Heewoo Jun, Gregory F. Diamos:
Fast Spectrogram Inversion using Multi-head Convolutional Neural Networks. CoRR abs/1808.06719 (2018) - 2017
- [c12]Alaelson C. Jatoba-Neto, Christian Esteve Rothenberg, Darli A. A. Mello, Sercan Ömer Arik, Joseph M. Kahn:
Scaling optical networks using full-spectrum spatial switching. HPSR 2017: 1-6 - [c11]Sercan Ömer Arik, Mike Chrzanowski, Adam Coates, Gregory Frederick Diamos, Andrew Gibiansky, Yongguo Kang, Xian Li, John Miller, Andrew Y. Ng, Jonathan Raiman, Shubho Sengupta, Mohammad Shoeybi:
Deep Voice: Real-time Neural Text-to-Speech. ICML 2017: 195-204 - [c10]Karthik Choutagunta, Sercan Ö. Arik, Mehrad Moradshahi, Joseph M. Kahn:
Optical MIMO signal processing for direct-detection mode-division multiplexing. ICTON 2017: 1 - [c9]Sercan Ömer Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky, Christopher Fougner, Ryan Prenger, Adam Coates:
Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting. INTERSPEECH 2017: 1606-1610 - [c8]Andrew Gibiansky, Sercan Ömer Arik, Gregory Frederick Diamos, John Miller, Kainan Peng, Wei Ping, Jonathan Raiman, Yanqi Zhou:
Deep Voice 2: Multi-Speaker Neural Text-to-Speech. NIPS 2017: 2962-2970 - [c7]Omar D. Domingues, Darli A. A. Mello, Reginaldo Silva, Sercan Ömer Arik, Joseph M. Kahn:
Capacity limits of space-division multiplexed submarine links subject to nonlinearities and power feed constraints. OFC 2017: 1-3 - [i6]Sercan Ömer Arik, Mike Chrzanowski, Adam Coates, Greg Diamos, Andrew Gibiansky, Yongguo Kang, Xian Li, John Miller, Jonathan Raiman, Shubho Sengupta, Mohammad Shoeybi:
Deep Voice: Real-time Neural Text-to-Speech. CoRR abs/1702.07825 (2017) - [i5]Sercan Ömer Arik, Markus Kliegl, Rewon Child, Joel Hestness, Andrew Gibiansky, Christopher Fougner, Ryan Prenger, Adam Coates:
Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting. CoRR abs/1703.05390 (2017) - [i4]Sercan Ömer Arik, Gregory F. Diamos, Andrew Gibiansky, John Miller, Kainan Peng, Wei Ping, Jonathan Raiman, Yanqi Zhou:
Deep Voice 2: Multi-Speaker Neural Text-to-Speech. CoRR abs/1705.08947 (2017) - [i3]Sercan Ömer Arik, Joseph M. Kahn:
Low-complexity implementation of convex optimization-based phase retrieval. CoRR abs/1707.05797 (2017) - [i2]Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan Ömer Arik, Ajay Kannan, Sharan Narang, Jonathan Raiman, John Miller:
Deep Voice 3: 2000-Speaker Neural Text-to-Speech. CoRR abs/1710.07654 (2017) - 2015
- [c6]Sercan Ömer Arik, Keang-Po Ho, Joseph M. Kahn:
Group delay statistics and management in mode-division multiplexing. ACSSC 2015: 991-998 - [c5]Sercan Ömer Arik, Daulet Askarov, Joseph M. Kahn:
MIMO DSP complexity in mode-division multiplexing. OFC 2015: 1-3 - [c4]Joseph M. Kahn, Sercan Ömer Arik, Keang-Po Ho:
MIMO channel statistics and signal processing in mode-division multiplexing systems. SPAWC 2015: 440-444 - 2014
- [j1]Sercan Ömer Arik, Joseph M. Kahn, Keang-Po Ho:
MIMO Signal Processing for Mode-Division Multiplexing: An overview of channel models and signal processing architectures. IEEE Signal Process. Mag. 31(2): 25-34 (2014) - [c3]Sercan Ö. Arik, David S. Millar, Toshiaki Koike-Akino, Keisuke Kojima, Kieran Parsons:
High-dimensional modulation for mode-division multiplexing. OFC 2014: 1-3 - [c2]David S. Millar, Toshiaki Koike-Akino, Sercan Ö. Arik, Keisuke Kojima, Kieran Parsons:
Comparison of quaternary block-coding and sphere-cutting for high-dimensional modulation. OFC 2014: 1-3 - [i1]Sercan Ö. Arik, Sukru Burc Eryilmaz, Adam Goldberg:
Supervised classification-based stock prediction and portfolio optimization. CoRR abs/1406.0824 (2014) - 2011
- [c1]Sercan Ömer Arik, Elif Vural, Pascal Frossard:
Alignment of uncalibrated images for multi-view classification. ICIP 2011: 2365-2368
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-10 21:46 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint