default search action
Varun Chandola
Person information
- affiliation: State University of New York (SUNY) at Buffalo
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j24]Suchismit Mahapatra, Varun Chandola:
Learning manifolds from non-stationary streams. J. Big Data 11(1): 42 (2024) - [c40]Namit Juneja, Varun Chandola, Jaroslaw Zola, Olga Wodo, Parth Desai:
Resource Efficient Bayesian Optimization. CLOUD 2024: 12-19 - 2023
- [j23]Amol Salunkhe, Dwyer Deighan, Paul E. DesJardin, Varun Chandola:
Physics informed machine learning for chemistry tabulation. J. Comput. Sci. 69: 102001 (2023) - [j22]Sreelekha Guggilam, Varun Chandola, Abani K. Patra:
Large Deviations Anomaly Detection (LAD) for collection of multivariate time series data: Applications to COVID-19 data. J. Comput. Sci. 72: 102101 (2023) - [e11]Ashwin Shashidharan, Martin Werner, Krishna Karthik Gadiraju, Varun Chandola, Ranga Raju Vatsavai:
Proceedings of the 11th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial 2023, Hamburg, Germany, 13 November 2023. ACM 2023 [contents] - [i21]Sreelekha Guggilam, Varun Chandola, Abani K. Patra:
Large Deviations for Accelerating Neural Networks Training. CoRR abs/2303.00954 (2023) - 2022
- [j21]Sreelekha Guggilam, Varun Chandola, Abani K. Patra:
Tracking clusters and anomalies in evolving data streams. Stat. Anal. Data Min. 15(2): 156-178 (2022) - [j20]Ashwin Shashidharan, Krishna Karthik Gadiraju, Ranga Raju Vatsavai, Varun Chandola:
The 10th ACM SIGSPATIAL International Workshop on Analytics for Big Spatial Data (BigSpatial 2022). ACM SIGSPATIAL Special 14(1): 43-44 (2022) - [c39]Amol Salunkhe, Dwyer Deighan, Paul E. DesJardin, Varun Chandola:
ChemTab: A Physics Guided Chemistry Modeling Framework. ICCS (1) 2022: 75-88 - [c38]Sreelekha Guggilam, Varun Chandola, Abani K. Patra:
Classifying Anomalous Members in a Collection of Multivariate Time Series Data Using Large Deviations Principle: An Application to COVID-19 Data. ICCS (1) 2022: 133-149 - [c37]Pranav Sankhe, Seventy F. Hall, Melanie D. Sage, Maria Y. Rodriguez, Varun Chandola, Kenneth Joseph:
Mutual Information Scoring: Increasing Interpretability in Categorical Clustering Tasks with Applications to Child Welfare Data. SBP-BRiMS 2022: 165-175 - [e10]Ashwin Shashidharan, Krishna Karthik Gadiraju, Varun Chandola, Ranga Raju Vatsavai:
Proceedings of the 10th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial 2022, Seattle, Washington, 1 November 2022. ACM 2022, ISBN 978-1-4503-9531-1 [contents] - [i20]Amol Salunkhe, Dwyer Deighan, Paul E. DesJardin, Varun Chandola:
ChemTab: A Physics Guided Chemistry Modeling Framework. CoRR abs/2202.09855 (2022) - [i19]Pranav Sankhe, Seventy F. Hall, Melanie D. Sage, Maria Y. Rodriguez, Varun Chandola, Kenneth Joseph:
Mutual Information Scoring: Increasing Interpretability in Categorical Clustering Tasks with Applications to Child Welfare Data. CoRR abs/2208.01802 (2022) - [i18]Amol Salunkhe, Dwyer Deighan, Paul E. DesJardin, Varun Chandola:
Physics Informed Machine Learning for Chemistry Tabulation. CoRR abs/2211.03022 (2022) - [i17]Amol Salunkhe, Georgios Georgalis, Abani K. Patra, Varun Chandola:
An Ensemble-Based Deep Framework for Estimating Thermo-Chemical State Variables from Flamelet Generated Manifolds. CoRR abs/2211.14098 (2022) - [i16]Syed Mohammed Arshad Zaidi, Varun Chandola, Eun-Hye Enki Yoo:
Geo-Adaptive Deep Spatio-Temporal predictive modeling for human mobility. CoRR abs/2211.14885 (2022) - 2021
- [j19]Syed Mohammed Arshad Zaidi, Varun Chandola, Eun-Hye Enki Yoo:
DST-Predict: Predicting Individual Mobility Patterns From Mobile Phone GPS Data. IEEE Access 9: 167592-167604 (2021) - [c36]Jialiang Jiang, Sharon Hewner, Varun Chandola:
Explainable Deep Learning for Readmission Prediction with Tree-GloVe Embedding. ICHI 2021: 138-147 - [c35]Marc Böhlen, Raunaq Jain, Wawan Sujarwo, Varun Chandola:
From images in the wild to video-informed image classification. ICMLA 2021: 656-661 - [c34]Namit Juneja, Jaroslaw Zola, Varun Chandola, Olga Wodo:
Graph-based Strategy for Establishing Morphology Similarity. SSDBM 2021: 169-180 - [i15]Marc Böhlen, Varun Chandola, Wawan Sujarwo, Raunaq Jain:
From images in the wild to video-informed image classification. CoRR abs/2109.12040 (2021) - [i14]Sreelekha Guggilam, Varun Chandola, Abani K. Patra:
Anomaly Detection for High-Dimensional Data Using Large Deviations Principle. CoRR abs/2109.13698 (2021) - 2020
- [j18]Frank Schoeneman, Varun Chandola, Nils Napp, Olga Wodo, Jaroslaw Zola:
Learning Manifolds from Dynamic Process Data. Algorithms 13(2): 30 (2020) - [j17]Ashwin Shashidharan, Varun Chandola, Ranga Raju Vatsavai:
The 9th ACM SIGSPATIAL International Workshop on Analytics for Big Spatial Data (BigSpatial 2020): November 3, 2020. ACM SIGSPATIAL Special 12(3): 15-16 (2020) - [e9]Varun Chandola, Ranga Raju Vatsavai, Ashwin Shashidharan:
BIGSPATIAL '20: Proceedings of the 9th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2020, Seattle, WA, USA, November 3, 2020. ACM 2020, ISBN 978-1-4503-8162-8 [contents]
2010 – 2019
- 2019
- [j16]Duc Thanh Anh Luong, Prerna Singh, Mahin Ramezani, Varun Chandola:
longSil: an Evaluation Metric to Assess Quality of Clustering Longitudinal Clinical Data. J. Heal. Informatics Res. 3(4): 441-459 (2019) - [j15]Ashwin Shashidharan, Varun Chandola, Ranga Raju Vatsavai:
The Eighth ACM SIGSPATIAL International Workshop on Analysis for Big Spatial Data: Chicago, IL, USA - November 5, 2019. ACM SIGSPATIAL Special 11(3): 38-39 (2019) - [c33]Jialiang Jiang, Sharon Hewner, Varun Chandola:
Tree-based Regularization for Interpretable Readmission Prediction. AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering 2019 - [c32]Sreelekha Guggilam, Syed Mohammed Arshad Zaidi, Varun Chandola, Abani K. Patra:
Integrated Clustering and Anomaly Detection (INCAD) for Streaming Data. ICCS (4) 2019: 45-59 - [c31]Duc Thanh Anh Luong, Varun Chandola:
Learning Deep Representations from Clinical Data for Chronic Kidney Disease. ICHI 2019: 1-10 - [e8]Varun Chandola, Ranga Raju Vatsavai, Ashwin Shashidharan:
Proceedings of the 8th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2019, Chicago, IL, USA, November 5th, 2019. ACM 2019, ISBN 978-1-4503-6966-4 [contents] - [i13]Sreelekha Guggilam, Syed Mohammed Arshad Zaidi, Varun Chandola, Abani K. Patra:
Integrated Clustering and Anomaly Detection (INCAD) for Streaming Data (Revised). CoRR abs/1911.00184 (2019) - 2018
- [j14]Ting Xie, Varun Chandola, Oliver Kennedy:
Query Log Compression for Workload Analytics. Proc. VLDB Endow. 12(3): 183-196 (2018) - [j13]Varun Chandola, Ranga Raju Vatsavai:
The seventh ACM SIGSPATIAL international workshop on analysis for big spatial data seattle, wa, USA - November 6, 2018. ACM SIGSPATIAL Special 10(3): 12-13 (2018) - [j12]Gökhan Kul, Duc Thanh Anh Luong, Ting Xie, Varun Chandola, Oliver Kennedy, Shambhu J. Upadhyaya:
Similarity Metrics for SQL Query Clustering. IEEE Trans. Knowl. Data Eng. 30(12): 2408-2420 (2018) - [c30]Niyazi Sorkunlu, Duc Thanh Anh Luong, Varun Chandola:
dynamicMF: A Matrix Factorization Approach to Monitor Resource Usage in High Performance Computing Systems. IEEE BigData 2018: 1302-1307 - [c29]Frank Schoeneman, Varun Chandola, Nils Napp, Olga Wodo, Jaroslaw Zola:
Entropy-Isomap: Manifold Learning for High-dimensional Dynamic Processes. IEEE BigData 2018: 1655-1660 - [c28]Arun Sharma, Syed Mohammed Arshad Zaidi, Varun Chandola, Melissa R. Allen, Budhendra L. Bhaduri:
WebGIobe - A cloud-based geospatial analysis framework for interacting with climate data. BigSpatial@SIGSPATIAL 2018: 42-46 - [c27]Gökhan Kul, Shambhu J. Upadhyaya, Varun Chandola:
Detecting Data Leakage from Databases on Android Apps with Concept Drift. TrustCom/BigDataSE 2018: 905-913 - [e7]Varun Chandola, Ranga Raju Vatsavai:
Proceedings of the 7th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2018, Seattle, WA, USA, November 6, 2018. ACM 2018, ISBN 978-1-4503-6041-8 [contents] - [i12]Frank Schoeneman, Varun Chandola, Nils Napp, Olga Wodo, Jaroslaw Zola:
Entropy-Isomap: Manifold Learning for High-dimensional Dynamic Processes. CoRR abs/1802.06823 (2018) - [i11]Jialiang Jiang, Sharon Hewner, Varun Chandola:
Hospital Readmission Prediction - Applying Hierarchical Sparsity Norms for Interpretable Models. CoRR abs/1804.01188 (2018) - [i10]Suchismit Mahapatra, Varun Chandola:
Learning Manifolds from Non-stationary Streaming Data. CoRR abs/1804.08833 (2018) - [i9]Gökhan Kul, Shambhu J. Upadhyaya, Varun Chandola:
Detecting Data Leakage from Databases on Android Apps with Concept Drift. CoRR abs/1805.11780 (2018) - [i8]Ting Xie, Oliver Kennedy, Varun Chandola:
Query Log Compression for Workload Analytics. CoRR abs/1809.00405 (2018) - [i7]Niyazi Sorkunlu, Duc Thanh Anh Luong, Varun Chandola:
dynamicMF: A Matrix Factorization Approach to Monitor Resource Usage in High Performance Computing Systems. CoRR abs/1809.10624 (2018) - [i6]Duc Thanh Anh Luong, Varun Chandola:
An Empirical Evaluation of Time-Aware LSTM Autoencoder on Chronic Kidney Disease. CoRR abs/1810.00490 (2018) - 2017
- [j11]Varun Chandola, Ranga Raju Vatsavai:
The Sixth ACM SIGSPATIAL International Workshop on Analysis for Big Spatial Data: Redondo Beach, CA, USA - November 7, 2017. ACM SIGSPATIAL Special 9(3): 20-21 (2017) - [c26]Suchismit Mahapatra, Varun Chandola:
S-Isomap++: Multi manifold learning from streaming data. IEEE BigData 2017: 716-725 - [c25]Niyazi Sorkunlu, Varun Chandola, Abani K. Patra:
Tracking System Behavior from Resource Usage Data. CLUSTER 2017: 410-418 - [c24]Prerna Singh, Varun Chandola, Chester H. Fox:
Automatic Extraction of Deep Phenotypes for Precision Medicine in Chronic Kidney Disease. DH 2017: 195-199 - [c23]Duc Thanh Anh Luong, Varun Chandola:
A K-Means Approach to Clustering Disease Progressions. ICHI 2017: 268-274 - [c22]Frank Schoeneman, Suchismit Mahapatra, Varun Chandola, Nils Napp, Jaroslaw Zola:
Error Metrics for Learning Reliable Manifolds from Streaming Data. SDM 2017: 750-758 - [e6]Varun Chandola, Ranga Raju Vatsavai:
Proceedings of the 6th ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2017, Redondo Beach, CA, USA, November 7, 2017. ACM 2017, ISBN 978-1-4503-5494-3 [contents] - [r1]Varun Chandola, Arindam Banerjee, Vipin Kumar:
Active Learning. Encyclopedia of Machine Learning and Data Mining 2017: 42-56 - [i5]Niyazi Sorkunlu, Varun Chandola, Abani K. Patra:
Tracking System Behaviour from Resource Usage Data. CoRR abs/1705.10756 (2017) - [i4]Suchismit Mahapatra, Varun Chandola:
S-Isomap++: Multi Manifold Learning from Streaming Data. CoRR abs/1710.06462 (2017) - [i3]Suchismit Mahapatra, Varun Chandola:
Modeling Graphs Using a Mixture of Kronecker Models. CoRR abs/1710.07231 (2017) - [i2]Marc Böhlen, Varun Chandola, Amol Salunkhe:
Server, server in the cloud. Who is the fairest in the crowd? CoRR abs/1711.08801 (2017) - 2016
- [j10]Ranga Raju Vatsavai, Varun Chandola:
Guest editorial: big spatial data. GeoInformatica 20(4): 797-799 (2016) - [c21]Gökhan Kul, Duc Luong, Ting Xie, Patrick Coonan, Varun Chandola, Oliver Kennedy, Shambhu J. Upadhyaya:
Ettu: Analyzing Query Intents in Corporate Databases. WWW (Companion Volume) 2016: 463-466 - [e5]Varun Chandola, Ranga Raju Vatsavai:
Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2016, Burlingame, California, USA, October 31, 2016. ACM 2016, ISBN 978-1-4503-4581-1 [contents] - [i1]Gökhan Kul, Duc Luong, Ting Xie, Patrick Coonan, Varun Chandola, Oliver Kennedy, Shambhu J. Upadhyaya:
Summarizing Large Query Logs in Ettu. CoRR abs/1608.01013 (2016) - 2015
- [j9]Varun Chandola, Ranga Raju Vatsavai:
The Third ACM SIGSPATIAL International Workshop on Analysis for Big Spatial Data Dallas, Texas, USA - November 4, 2014. ACM SIGSPATIAL Special 7(2): 44 (2015) - [c20]Suchismit Mahapatra, Varun Chandola:
Modeling graphs using a mixture of Kronecker models. IEEE BigData 2015: 727-736 - [c19]Zhi Yang, Varun Chandola:
Surface Reconstruction from Intensity Image Using Illumination Model Based Morphable Modeling. ICVS 2015: 117-127 - [p1]Varun Chandola, Jack C. Schryver, Sreenivas R. Sukumar:
Fraud Detection in Healthcare. Healthcare Data Analytics 2015: 577-598 - [e4]Varun Chandola, Ranga Raju Vatsavai:
Proceedings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2015, Bellevue, WA, USA, November 3-6, 2015. ACM 2015, ISBN 978-1-4503-3974-2 [contents] - 2014
- [j8]Varun Chandola, Varun Mithal, Vipin Kumar:
A reference based analysis framework for understanding anomaly detection techniques for symbolic sequences. Data Min. Knowl. Discov. 28(3): 702-735 (2014) - [j7]Varun Chandola, Ranga Raju Vatsavai:
BigSpatial-2013 workshop report: 2nd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (BigSpatial-2013): Nov 5, 2013, Orlando, Florida, USA. ACM SIGSPATIAL Special 6(1): 18-19 (2014) - [c18]Paul T. Bauman, Varun Chandola, Abani K. Patra, Matthew D. Jones:
Development of a computational and data-enabled science and engineering Ph.D. program. EduHPC@SC 2014: 21-26 - [e3]Varun Chandola, Ranga Raju Vatsavai:
Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2014, Dallas, Texas, USA, November 4, 2014. ACM 2014, ISBN 978-1-4503-3132-6 [contents] - 2013
- [c17]Varun Chandola, Sreenivas R. Sukumar, Jack C. Schryver:
Knowledge discovery from massive healthcare claims data. KDD 2013: 1312-1320 - [e2]Varun Chandola, Ranga Raju Vatsavai:
Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2013, Nov 4th, 2013, Orlando, FL, USA. ACM 2013, ISBN 978-1-4503-2534-9 [contents] - 2012
- [j6]Jordan Graesser, Anil M. Cheriyadat, Ranga Raju Vatsavai, Varun Chandola, Jordan Long, Eddie A. Bright:
Image Based Characterization of Formal and Informal Neighborhoods in an Urban Landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 5(4): 1164-1176 (2012) - [j5]Varun Chandola, Arindam Banerjee, Vipin Kumar:
Anomaly Detection for Discrete Sequences: A Survey. IEEE Trans. Knowl. Data Eng. 24(5): 823-839 (2012) - [c16]Ranga Raju Vatsavai, Auroop R. Ganguly, Varun Chandola, Anthony Stefanidis, Scott Klasky, Shashi Shekhar:
Spatiotemporal data mining in the era of big spatial data: algorithms and applications. BigSpatial@SIGSPATIAL 2012: 1-10 - [e1]Varun Chandola, Ranga Raju Vatsavai, Chetan Gupta:
Proceedings of the 1st ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial@SIGSPATIAL 2012, Redondo Beach, CA, USA, November 6, 2012. ACM 2012, ISBN 978-1-4503-1692-7 [contents] - 2011
- [j4]Varun Chandola, Ranga Raju Vatsavai:
A scalable gaussian process analysis algorithm for biomass monitoring. Stat. Anal. Data Min. 4(4): 430-445 (2011) - [c15]Ranga Raju Vatsavai, Eddie A. Bright, Varun Chandola, Budhendra L. Bhaduri, Anil M. Cheriyadat, Jordan Graesser:
Machine learning approaches for high-resolution urban land cover classification: a comparative study. COM.Geo 2011: 11:1-11:10 - [c14]Varun Chandola, Ranga Raju Vatsavai, Budhendra L. Bhaduri:
iGlobe: an interactive visualization and analysis framework for geospatial data. COM.Geo 2011: 21:1-21:6 - [c13]Ranga Raju Vatsavai, Mark A. Tuttle, Budhendra L. Bhaduri, Edward Bright, Anil M. Cheriyadat, Varun Chandola, Jordan Graesser:
Rapid damage assessment using high-resolution remote sensing imagery: Tools and techniques. IGARSS 2011: 1445-1448 - [c12]Varun Chandola, Ranga Raju Vatsavai:
Implementing a gaussian process learning algorithm in mixed parallel environment. ScalA@SC 2011: 3-6 - [c11]Varun Chandola, Ranga Raju Vatsavai:
A Gaussian Process Based Online Change Detection Algorithm for Monitoring Periodic Time Series. SDM 2011: 95-106 - [c10]Ranga Raju Vatsavai, Christopher T. Symons, Varun Chandola, Goo Jun:
GX-Means: A model-based divide and merge algorithm for geospatial image clustering. ICCS 2011: 186-195 - 2010
- [j3]Varun Chandola, Olufemi A. Omitaomu, Auroop R. Ganguly, Ranga Raju Vatsavai, Nitesh V. Chawla, João Gama, Mohamed Medhat Gaber:
Knowledge discovery from sensor data (SensorKDD). SIGKDD Explor. 12(2): 50-53 (2010) - [c9]Varun Chandola, Ranga Raju Vatsavai:
Scalable Time Series Change Detection for Biomass Monitoring Using Gaussian Process. CIDU 2010: 69-82 - [c8]Varun Chandola, Ranga Raju Vatsavai:
Multi-temporal remote sensing image classification - A multi-view approach. CIDU 2010: 258-270 - [c7]Varun Chandola, Shyam Boriah, Vipin Kumar:
A reference based analysis framework for analyzing system call traces. CSIIRW 2010: 33 - [c6]Varun Chandola, Dafeng Hui, Lianhong Gu, Budhendra L. Bhaduri, Ranga Raju Vatsavai:
Using Time Series Segmentation for Deriving Vegetation Phenology Indices from MODIS NDVI Data. ICDM Workshops 2010: 202-208
2000 – 2009
- 2009
- [j2]Varun Chandola, Arindam Banerjee, Vipin Kumar:
Anomaly detection: A survey. ACM Comput. Surv. 41(3): 15:1-15:58 (2009) - [c5]Varun Chandola, Shyam Boriah, Vipin Kumar:
A Framework for Exploring Categorical Data. SDM 2009: 187-198 - 2008
- [c4]Varun Chandola, Varun Mithal, Vipin Kumar:
Comparative Evaluation of Anomaly Detection Techniques for Sequence Data. ICDM 2008: 743-748 - [c3]Shyam Boriah, Varun Chandola, Vipin Kumar:
Similarity Measures for Categorical Data: A Comparative Evaluation. SDM 2008: 243-254 - 2007
- [j1]Varun Chandola, Vipin Kumar:
Summarization - compressing data into an informative representation. Knowl. Inf. Syst. 12(3): 355-378 (2007) - [c2]Jon B. Weissman, Vipin Kumar, Varun Chandola, Eric Eilertson, Levent Ertöz, György J. Simon, Seonho Kim, Jinoh Kim:
DDDAS/ITR: A Data Mining and Exploration Middleware for Grid and Distributed Computing. International Conference on Computational Science (1) 2007: 1222-1229 - 2005
- [c1]Varun Chandola, Vipin Kumar:
Summarization - Compressing Data into an Informative Representation. ICDM 2005: 98-105
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:04 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint