default search action
Pierre Geurts
Person information
- affiliation: Université de Liège, Belgium
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j20]Amir Hossein Akhavan Rahnama, Judith Bütepage, Pierre Geurts, Henrik Boström:
Can local explanation techniques explain linear additive models? Data Min. Knowl. Discov. 38(1): 237-280 (2024) - [j19]Vân Anh Huynh-Thu, Pierre Geurts:
Optimizing model-agnostic random subspace ensembles. Mach. Learn. 113(2): 993-1042 (2024) - [i20]Gaspard Lambrechts, Yann Claes, Pierre Geurts, Damien Ernst:
Parallelizing Autoregressive Generation with Variational State Space Models. CoRR abs/2407.08415 (2024) - 2023
- [c60]Yann Claes, Vân Anh Huynh-Thu, Pierre Geurts:
Knowledge-Guided Additive Modeling for Supervised Regression. DS 2023: 64-78 - [i19]Yann Claes, Vân Anh Huynh-Thu, Pierre Geurts:
Knowledge-Guided Additive Modeling For Supervised Regression. CoRR abs/2307.02229 (2023) - 2022
- [c59]Navdeep Kumar, Claudia Di Biagio, Zachary Dellacqua, Ratish Raman, Arianna Martini, Clara Boglione, Marc Muller, Pierre Geurts, Raphaël Marée:
Empirical Evaluation of Deep Learning Approaches for Landmark Detection in Fish Bioimages. ECCV Workshops (4) 2022: 470-486 - [c58]Romain Mormont, Mehdi Testouri, Raphaël Marée, Pierre Geurts:
Relieving Pixel-Wise Labeling Effort for Pathology Image Segmentation with Self-training. ECCV Workshops (7) 2022: 577-592 - [i18]Jean-Michel Begon, Pierre Geurts:
Distillation from heterogeneous unlabeled collections. CoRR abs/2201.06507 (2022) - 2021
- [j18]Matthia Sabatelli, Nikolay Banar, Marie Cocriamont, Eva Coudyzer, Karine Lasaracina, Walter Daelemans, Pierre Geurts, Mike Kestemont:
Advances in Digital Music Iconography: Benchmarking the detection of musical instruments in unrestricted, non-photorealistic images from the artistic domain. Digit. Humanit. Q. 15(1) (2021) - [j17]Romain Mormont, Pierre Geurts, Raphaël Marée:
Multi-Task Pre-Training of Deep Neural Networks for Digital Pathology. IEEE J. Biomed. Health Informatics 25(2): 412-421 (2021) - [c57]Navdeep Kumar, Alessio Carletti, Paulo J. Gavaia, Marc Muller, M. Leonor Cancela, Pierre Geurts, Raphaël Marée:
Deep Learning Approaches for Head and Operculum Segmentation in Zebrafish Microscopy Images. CAIP (1) 2021: 154-164 - [c56]Jean-Michel Begon, Pierre Geurts:
Sample-Free White-Box Out-of-Distribution Detection for Deep Learning. CVPR Workshops 2021: 3290-3299 - [c55]Nikolay Banar, Matthia Sabatelli, Pierre Geurts, Walter Daelemans, Mike Kestemont:
Transfer Learning with Style Transfer between the Photorealistic and Artistic Domain. Computer Vision and Image Analysis of Art 2021: 1-9 - [c54]Antonio Sutera, Gilles Louppe, Vân Anh Huynh-Thu, Louis Wehenkel, Pierre Geurts:
From global to local MDI variable importances for random forests and when they are Shapley values. NeurIPS 2021: 3533-3543 - [c53]Matthia Sabatelli, Mike Kestemont, Pierre Geurts:
On the Transferability of Winning Tickets in Non-natural Image Datasets. VISIGRAPP (5: VISAPP) 2021: 59-69 - [i17]Amir Hossein Akhavan Rahnama, Judith Bütepage, Pierre Geurts, Henrik Boström:
Evaluation of Local Model-Agnostic Explanations Using Ground Truth. CoRR abs/2106.02488 (2021) - [i16]Vân Anh Huynh-Thu, Pierre Geurts:
Optimizing model-agnostic Random Subspace ensembles. CoRR abs/2109.03099 (2021) - [i15]Matthia Sabatelli, Pierre Geurts:
On The Transferability of Deep-Q Networks. CoRR abs/2110.02639 (2021) - [i14]Antonio Sutera, Gilles Louppe, Vân Anh Huynh-Thu, Louis Wehenkel, Pierre Geurts:
From global to local MDI variable importances for random forests and when they are Shapley values. CoRR abs/2111.02218 (2021) - 2020
- [j16]Ivica Slavkov, Matej Petkovic, Pierre Geurts, Dragi Kocev, Saso Dzeroski:
Error curves for evaluating the quality of feature rankings. PeerJ Comput. Sci. 6: e310 (2020) - [c52]Nicolas Vecoven, Jean-Michel Begon, Antonio Sutera, Pierre Geurts, Vân Anh Huynh-Thu:
Nets Versus Trees for Feature Ranking and Gene Network Inference. DS 2020: 231-245 - [c51]Matthia Sabatelli, Gilles Louppe, Pierre Geurts, Marco A. Wiering:
The Deep Quality-Value Family of Deep Reinforcement Learning Algorithms. IJCNN 2020: 1-8 - [e3]Bart Bogaerts, Gianluca Bontempi, Pierre Geurts, Nick Harley, Bertrand Lebichot, Tom Lenaerts, Gilles Louppe:
Artificial Intelligence and Machine Learning - 31st Benelux AI Conference, BNAIC 2019, and 28th Belgian-Dutch Machine Learning Conference, BENELEARN 2019, Brussels, Belgium, November 6-8, 2019, Revised Selected Papers. Communications in Computer and Information Science 1196, Springer 2020, ISBN 978-3-030-65153-4 [contents] - [i13]Romain Mormont, Pierre Geurts, Raphaël Marée:
Multi-task pre-training of deep neural networks for digital pathology. CoRR abs/2005.02561 (2020) - [i12]Matthia Sabatelli, Mike Kestemont, Pierre Geurts:
On the Transferability of Winning Tickets in Non-Natural Image Datasets. CoRR abs/2005.05232 (2020) - [i11]Pascal Leroy, Damien Ernst, Pierre Geurts, Gilles Louppe, Jonathan Pisane, Matthia Sabatelli:
QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to Cooperative Multi-Agent Reinforcement Learning. CoRR abs/2012.12062 (2020)
2010 – 2019
- 2019
- [c50]Matthia Sabatelli, Gilles Louppe, Pierre Geurts, Marco A. Wiering:
Deep Quality-Value (DQV) Learning. BNAIC/BENELEARN 2019 - [e2]Katrien Beuls, Bart Bogaerts, Gianluca Bontempi, Pierre Geurts, Nick Harley, Bertrand Lebichot, Tom Lenaerts, Gilles Louppe, Paul Van Eecke:
Proceedings of the 31st Benelux Conference on Artificial Intelligence (BNAIC 2019) and the 28th Belgian Dutch Conference on Machine Learning (Benelearn 2019), Brussels, Belgium, November 6-8, 2019. CEUR Workshop Proceedings 2491, CEUR-WS.org 2019 [contents] - [i10]Arnaud Joly, Louis Wehenkel, Pierre Geurts:
Gradient tree boosting with random output projections for multi-label classification and multi-output regression. CoRR abs/1905.07558 (2019) - [i9]Matthia Sabatelli, Gilles Louppe, Pierre Geurts, Marco A. Wiering:
Approximating two value functions instead of one: towards characterizing a new family of Deep Reinforcement Learning algorithms. CoRR abs/1909.01779 (2019) - 2018
- [j15]Konstantinos Pliakos, Pierre Geurts, Celine Vens:
Global multi-output decision trees for interaction prediction. Mach. Learn. 107(8-10): 1257-1281 (2018) - [c49]Antonio Sutera, Célia Châtel, Gilles Louppe, Louis Wehenkel, Pierre Geurts:
Random Subspace with Trees for Feature Selection Under Memory Constraints. AISTATS 2018: 929-937 - [c48]Romain Mormont, Pierre Geurts, Raphaël Marée:
Comparison of Deep Transfer Learning Strategies for Digital Pathology. CVPR Workshops 2018: 2262-2271 - [c47]Matthia Sabatelli, Mike Kestemont, Walter Daelemans, Pierre Geurts:
Deep Transfer Learning for Art Classification Problems. ECCV Workshops (2) 2018: 631-646 - [i8]Matthia Sabatelli, Gilles Louppe, Pierre Geurts, Marco A. Wiering:
Deep Quality-Value (DQV) Learning. CoRR abs/1810.00368 (2018) - 2017
- [c46]Samir Azrour, Sébastien Piérard, Pierre Geurts, Marc Van Droogenbroeck:
A Two-Step Methodology for Human Pose Estimation Increasing the Accuracy and Reducing the Amount of Learning Samples Dramatically. ACIVS 2017: 3-14 - [c45]Jean-Michel Begon, Arnaud Joly, Pierre Geurts:
Globally Induced Forest: A Prepruning Compression Scheme. ICML 2017: 420-428 - [c44]M. Wehenkel, Christine Bastin, Christophe Phillips, Pierre Geurts:
Tree ensemble methods and parcelling to identify brain areas related to Alzheimer's disease. PRNI 2017: 1-4 - [c43]Remy Vandaele, François Lallemand, Philippe Martinive, Akos Gulyban, Sébastien Jodogne, Philippe Coucke, Pierre Geurts, Raphaël Marée:
Automated Multimodal Volume Registration based on Supervised 3D Anatomical Landmark Detection. VISIGRAPP (5: VISAPP) 2017: 333-340 - [i7]Antonio Sutera, Célia Châtel, Gilles Louppe, Louis Wehenkel, Pierre Geurts:
Random Subspace with Trees for Feature Selection Under Memory Constraints. CoRR abs/1709.01177 (2017) - 2016
- [j14]Raphaël Marée, Loic Rollus, Benjamin Stevens, Renaud Hoyoux, Gilles Louppe, Remy Vandaele, Jean-Michel Begon, Philipp Kainz, Pierre Geurts, Louis Wehenkel:
Collaborative analysis of multi-gigapixel imaging data using Cytomine. Bioinform. 32(9): 1395-1401 (2016) - [j13]Raphaël Marée, Pierre Geurts, Louis Wehenkel:
Towards generic image classification using tree-based learning: An extensive empirical study. Pattern Recognit. Lett. 74: 17-23 (2016) - [c42]Antonio Sutera, Gilles Louppe, Vân Anh Huynh-Thu, Louis Wehenkel, Pierre Geurts:
Context-dependent feature analysis with random forests. UAI 2016 - [i6]Antonio Sutera, Gilles Louppe, Vân Anh Huynh-Thu, Louis Wehenkel, Pierre Geurts:
Context-dependent feature analysis with random forests. CoRR abs/1605.03848 (2016) - 2015
- [j12]Ching-Wei Wang, Cheng-Ta Huang, Meng-Che Hsieh, Chung-Hsing Li, Sheng-Wei Chang, Wei-Cheng Li, Remy Vandaele, Raphaël Marée, Sébastien Jodogne, Pierre Geurts, Cheng Chen, Guoyan Zheng, Chengwen Chu, Hengameh Mirzaalian, Ghassan Hamarneh, Tomaz Vrtovec, Bulat Ibragimov:
Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge. IEEE Trans. Medical Imaging 34(9): 1890-1900 (2015) - [j11]Wei Du, Yongjun Liao, Narisu Tao, Pierre Geurts, Xiaoming Fu, Guy Leduc:
Rating Network Paths for Locality-Aware Overlay Construction and Routing. IEEE/ACM Trans. Netw. 23(5): 1661-1673 (2015) - 2014
- [c41]Antonio Sutera, Arnaud Joly, Vincent François-Lavet, Zixiao Aaron Qiu, Gilles Louppe, Damien Ernst, Pierre Geurts:
Simple Connectome Inference from Partial Correlation Statistics in Calcium Imaging. Neural Connectomics 2014: 23-34 - [c40]Samir Azrour, Sébastien Piérard, Pierre Geurts, Marc Van Droogenbroeck:
Data normalization and supervised learning to assess the condition of patients with multiple sclerosis based on gait analysis. ESANN 2014 - [c39]Arnaud Joly, Pierre Geurts, Louis Wehenkel:
Random Forests with Random Projections of the Output Space for High Dimensional Multi-label Classification. ECML/PKDD (1) 2014: 607-622 - [i5]Arnaud Joly, Pierre Geurts, Louis Wehenkel:
Random forests with random projections of the output space for high dimensional multi-label classification. CoRR abs/1404.3581 (2014) - [i4]Marie Schrynemackers, Louis Wehenkel, M. Madan Babu, Pierre Geurts:
Classifying pairs with trees for supervised biological network inference. CoRR abs/1404.6074 (2014) - [i3]Antonio Sutera, Arnaud Joly, Vincent François-Lavet, Zixiao Aaron Qiu, Gilles Louppe, Damien Ernst, Pierre Geurts:
Simple connectome inference from partial correlation statistics in calcium imaging. CoRR abs/1406.7865 (2014) - 2013
- [j10]Yongjun Liao, Wei Du, Pierre Geurts, Guy Leduc:
DMFSGD: A Decentralized Matrix Factorization Algorithm for Network Distance Prediction. IEEE/ACM Trans. Netw. 21(5): 1511-1524 (2013) - [c38]Gilles Louppe, Louis Wehenkel, Antonio Sutera, Pierre Geurts:
Understanding variable importances in forests of randomized trees. NIPS 2013: 431-439 - 2012
- [j9]Vân Anh Huynh-Thu, Yvan Saeys, Louis Wehenkel, Pierre Geurts:
Statistical interpretation of machine learning-based feature importance scores for biomarker discovery. Bioinform. 28(13): 1766-1774 (2012) - [c37]Samuel Hiard, Pierre Geurts, Louis Wehenkel:
Comparator selection for RPC with many labels. ECAI 2012: 408-413 - [c36]Arnaud Joly, François Schnitzler, Pierre Geurts, Louis Wehenkel:
L1-based compression of random forest models. ESANN 2012 - [c35]Francis Maes, Pierre Geurts, Louis Wehenkel:
Embedding Monte Carlo Search of Features in Tree-Based Ensemble Methods. ECML/PKDD (1) 2012: 191-206 - [c34]Gilles Louppe, Pierre Geurts:
Ensembles on Random Patches. ECML/PKDD (1) 2012: 346-361 - [i2]Yongjun Liao, Wei Du, Pierre Geurts, Guy Leduc:
DMFSGD: A Decentralized Matrix Factorization Algorithm for Network Distance Prediction. CoRR abs/1201.1174 (2012) - [i1]Wei Du, Yongjun Liao, Pierre Geurts, Guy Leduc:
Ordinal Rating of Network Performance and Inference by Matrix Completion. CoRR abs/1211.0447 (2012) - 2011
- [c33]Yongjun Liao, Wei Du, Pierre Geurts, Guy Leduc:
Decentralized prediction of end-to-end network performance classes. CoNEXT 2011: 14 - [c32]François Schnitzler, Sourour Ammar, Philippe Leray, Pierre Geurts, Louis Wehenkel:
Efficiently Approximating Markov Tree Bagging for High-Dimensional Density Estimation. ECML/PKDD (3) 2011: 113-128 - [c31]Olivier Stern, Raphaël Marée, Jessica Aceto, Nathalie Jeanray, Marc Muller, Louis Wehenkel, Pierre Geurts:
Automatic Localization of Interest Points in Zebrafish Images with Tree-Based Methods. PRIB 2011: 179-190 - [c30]Pierre Geurts, Gilles Louppe:
Learning to rank with extremely randomized trees. Yahoo! Learning to Rank Challenge 2011: 49-61 - [c29]Pierre Geurts:
Learning from positive and unlabeled examples by enforcing statistical significance. AISTATS 2011: 305-314 - 2010
- [j8]Ibtissam El Khayat, Pierre Geurts, Guy Leduc:
Enhancement of TCP over wired/wireless networks with packet loss classifiers inferred by supervised learning. Wirel. Networks 16(2): 273-290 (2010) - [c28]Raphaël Marée, Olivier Stern, Pierre Geurts:
Biomedical Imaging Modality Classification Using Bags of Visual and Textual Terms with Extremely Randomized Trees: Report of ImageCLEF 2010 Experiments. CLEF (Notebook Papers/LABs/Workshops) 2010 - [c27]Raphaël Marée, Philippe Denis, Louis Wehenkel, Pierre Geurts:
Incremental indexing and distributed image search using shared randomized vocabularies. Multimedia Information Retrieval 2010: 91-100 - [c26]Yongjun Liao, Pierre Geurts, Guy Leduc:
Network Distance Prediction Based on Decentralized Matrix Factorization. Networking 2010: 15-26 - [c25]Saso Dzeroski, Pierre Geurts, Juho Rousu:
Preface. MLSB 2010: 1-2 - [p2]Pierre Geurts:
Bias vs Variance Decomposition for Regression and Classification. Data Mining and Knowledge Discovery Handbook 2010: 733-746 - [e1]Saso Dzeroski, Pierre Geurts, Juho Rousu:
Proceedings of the third International Workshop on Machine Learning in Systems Biology, MLSB 2009, Ljubljana, Slovenia, September 5-6, 2009. JMLR Proceedings 8, JMLR.org 2010 [contents]
2000 – 2009
- 2009
- [j7]Raphaël Marée, Pierre Geurts, Louis Wehenkel:
Content-based Image Retrieval by Indexing Random Subwindows with Randomized Trees. IPSJ Trans. Comput. Vis. Appl. 1: 46-57 (2009) - [c24]Raphaël Marée, Benjamin Stevens, Pierre Geurts, Y. Guern, P. Mack:
A machine learning approach for material detection in hyperspectral images. CVPR Workshops 2009: 106-111 - [c23]Yongjun Liao, Mohamed Ali Kâafar, Bamba Gueye, François Cantin, Pierre Geurts, Guy Leduc:
Detecting Triangle Inequality Violations in Internet Coordinate Systems by Supervised Learning. Networking 2009: 352-363 - [c22]Marie Dumont, Raphaël Marée, Louis Wehenkel, Pierre Geurts:
Fast Multi-class Image Annotation with Random Subwindows and Multiple Output Randomized Trees. VISAPP (2) 2009: 196-203 - 2008
- [c21]Vân Anh Huynh-Thu, Louis Wehenkel, Pierre Geurts:
Exploiting tree-based variable importances to selectively identify relevant variables. FSDM 2008: 60-73 - 2007
- [j6]Pierre Geurts, Nizar Touleimat, Marie Dutreix, Florence d'Alché-Buc:
Inferring biological networks with output kernel trees. BMC Bioinform. 8(S-2) (2007) - [j5]Ibtissam El Khayat, Pierre Geurts, Guy Leduc:
Machine-learnt versus analytical models of TCP throughput. Comput. Networks 51(10): 2631-2644 (2007) - [j4]Alberto Del Angel, Pierre Geurts, Damien Ernst, Mevludin Glavic, Louis Wehenkel:
Estimation of rotor angles of synchronous machines using artificial neural networks and local PMU-based quantities. Neurocomputing 70(16-18): 2668-2678 (2007) - [c20]Raphaël Marée, Pierre Geurts, Louis Wehenkel:
Content-Based Image Retrieval by Indexing Random Subwindows with Randomized Trees. ACCV (2) 2007: 611-620 - [c19]Pierre Geurts, Louis Wehenkel, Florence d'Alché-Buc:
Gradient boosting for kernelized output spaces. ICML 2007: 289-296 - 2006
- [j3]Pierre Geurts, Damien Ernst, Louis Wehenkel:
Extremely randomized trees. Mach. Learn. 63(1): 3-42 (2006) - [c18]Minh Quach, Pierre Geurts:
Elucidating the structure of genetic regulatory networks: a study of a second order dynamical model on artificial data. ESANN 2006: 569-574 - [c17]Pierre Geurts, Louis Wehenkel, Florence d'Alché-Buc:
Kernelizing the output of tree-based methods. ICML 2006: 345-352 - [c16]Vincent Auvray, Pierre Geurts, Louis Wehenkel:
A Semi-Algebraic Description of Naive Bayes Models with Two Hidden Classes. AI&M 2006 - [c15]Ibtissam El Khayat, Pierre Geurts, Guy Leduc:
On the Accuracy of Analytical Models of TCP Throughput. Networking 2006: 488-500 - 2005
- [j2]Pierre Geurts, Marianne Fillet, Dominique de Seny, Marie-Alice Meuwis, Michel Malaise, Marie-Paule Merville, Louis Wehenkel:
Proteomic mass spectra classification using decision tree based ensemble methods. Bioinform. 21(14): 3138-3145 (2005) - [j1]Damien Ernst, Pierre Geurts, Louis Wehenkel:
Tree-Based Batch Mode Reinforcement Learning. J. Mach. Learn. Res. 6: 503-556 (2005) - [c14]Pierre Geurts, Antia Blanco Cuesta, Louis Wehenkel:
Segment and Combine Approach for Biological Sequence Classification. CIBCB 2005: 194-201 - [c13]Raphaël Marée, Pierre Geurts, Justus H. Piater, Louis Wehenkel:
Biomedical Image Classification with Random Subwindows and Decision Trees. CVBIA 2005: 220-229 - [c12]Raphaël Marée, Pierre Geurts, Justus H. Piater, Louis Wehenkel:
Random Subwindows for Robust Image Classification. CVPR (1) 2005: 34-40 - [c11]Pierre Geurts, Louis Wehenkel:
Closed-form dual perturb and combine for tree-based models. ICML 2005: 233-240 - [c10]Ibtissam El Khayat, Pierre Geurts, Guy Leduc:
Improving TCP in Wireless Networks with an Adaptive Machine-Learnt Classifier of Packet Loss Causes. NETWORKING 2005: 549-560 - [c9]Pierre Geurts, Louis Wehenkel:
Segment and Combine Approach for Non-parametric Time-Series Classification. PKDD 2005: 478-485 - [p1]Pierre Geurts:
Bias vs. Variance Decomposition for Regression and Classification. The Data Mining and Knowledge Discovery Handbook 2005: 749-763 - 2004
- [c8]Pierre Geurts, Ibtissam El Khayat, Guy Leduc:
A Machine Learning Approach to Improve Congestion Control over Wireless Computer Networks. ICDM 2004: 383-386 - 2003
- [c7]Damien Ernst, Pierre Geurts, Louis Wehenkel:
Iteratively Extending Time Horizon Reinforcement Learning. ECML 2003: 96-107 - [c6]Raphaël Marée, Pierre Geurts, Giorgio Visimberga, Justus H. Piater, Louis Wehenkel:
A Comparison of Generic Machine Learning Algorithms for Image Classification. SGAI Conf. 2003: 169-182 - 2002
- [b1]Pierre Geurts:
Contributions to decision tree induction: bias/variance tradeoff and time series classification. University of Liège, Belgium, 2002 - 2001
- [c5]Pierre Geurts:
Dual perturb and combine algorithm. AISTATS 2001: 106-111 - [c4]Pierre Geurts:
Pattern Extraction for Time Series Classification. PKDD 2001: 115-127 - 2000
- [c3]Pierre Geurts, Louis Wehenkel:
Investigation and Reduction of Discretization Variance in Decision Tree Induction. ECML 2000: 162-170 - [c2]Pierre Geurts:
Some Enhencements of Decision Tree Bagging. PKDD 2000: 136-147 - [c1]Pierre Geurts, Louis Wehenkel:
Temporal Machine Learning for Switching Control. PKDD 2000: 401-408
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:15 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint