default search action
Erik D. Goodman
Person information
- affiliation: Michigan State University, East Lansing, MI, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [b1]Dhish Kumar Saxena, Sukrit Mittal, Kalyanmoy Deb, Erik D. Goodman:
Machine Learning Assisted Evolutionary Multi- and Many-Objective Optimization. Springer 2024, ISBN 978-981-99-2095-2, pp. 1-239 - [j69]Abhiroop Ghosh, Kalyanmoy Deb, Erik D. Goodman, Ronald C. Averill:
An Interactive Knowledge-Based Multiobjective Evolutionary Algorithm Framework for Practical Optimization Problems. IEEE Trans. Evol. Comput. 28(1): 223-237 (2024) - [j68]Sukrit Mittal, Dhish Kumar Saxena, Kalyanmoy Deb, Erik D. Goodman:
A Unified Innovized Progress Operator for Performance Enhancement in Evolutionary Multi- and Many-Objective Optimization. IEEE Trans. Evol. Comput. 28(6): 1605-1619 (2024) - 2023
- [j67]Chunteng Bao, Diju Gao, Wei Gu, Lihong Xu, Erik D. Goodman:
A new adaptive decomposition-based evolutionary algorithm for multi- and many-objective optimization. Expert Syst. Appl. 213(Part): 119080 (2023) - [j66]Chunteng Bao, Diju Gao, Yi Ding, Lihong Xu, Erik D. Goodman:
Many-task evolutionary algorithm with adaptive knowledge transfer via density-based clustering. Knowl. Based Syst. 278: 110906 (2023) - [j65]Shuwei Zhu, Lihong Xu, Erik D. Goodman, Kalyanmoy Deb, Zhichao Lu:
A general framework for enhancing relaxed Pareto dominance methods in evolutionary many-objective optimization. Nat. Comput. 22(2): 287-313 (2023) - [c88]Abhiroop Ghosh, Kalyanmoy Deb, Ronald C. Averill, Erik D. Goodman:
IK-EMOViz: An Interactive Knowledge-Based Evolutionary Multi-objective Optimization Framework. EMO 2023: 606-619 - [c87]Ritam Guha, Wei Ao, Stephen Kelly, Vishnu Boddeti, Erik D. Goodman, Wolfgang Banzhaf, Kalyanmoy Deb:
MOAZ: A Multi-Objective AutoML-Zero Framework. GECCO 2023: 485-492 - 2022
- [j64]Chaoda Peng, Hai-Lin Liu, Erik D. Goodman, Kay Chen Tan:
A two-phase framework of locating the reference point for decomposition-based constrained multi-objective evolutionary algorithms. Knowl. Based Syst. 239: 107933 (2022) - [j63]Yuanping Su, Lihong Xu, Erik D. Goodman:
Hybrid Surrogate-Based Constrained Optimization With a New Constraint-Handling Method. IEEE Trans. Cybern. 52(6): 5394-5407 (2022) - [j62]Shuwei Zhu, Lihong Xu, Erik D. Goodman, Zhichao Lu:
A New Many-Objective Evolutionary Algorithm Based on Generalized Pareto Dominance. IEEE Trans. Cybern. 52(8): 7776-7790 (2022) - [j61]Shuwei Zhu, Lihong Xu, Erik D. Goodman:
Hierarchical Topology-Based Cluster Representation for Scalable Evolutionary Multiobjective Clustering. IEEE Trans. Cybern. 52(9): 9846-9860 (2022) - [j60]Sukrit Mittal, Dhish Kumar Saxena, Kalyanmoy Deb, Erik D. Goodman:
Enhanced Innovized Progress Operator for Evolutionary Multi- and Many-Objective Optimization. IEEE Trans. Evol. Comput. 26(5): 961-975 (2022) - [j59]Sukrit Mittal, Dhish Kumar Saxena, Kalyanmoy Deb, Erik D. Goodman:
A Learning-based Innovized Progress Operator for Faster Convergence in Evolutionary Multi-objective Optimization. ACM Trans. Evol. Learn. Optim. 2(1): 1:1-1:29 (2022) - [i15]Abhiroop Ghosh, Kalyanmoy Deb, Erik D. Goodman, Ronald C. Averill:
An Interactive Knowledge-based Multi-objective Evolutionary Algorithm Framework for Practical Optimization Problems. CoRR abs/2209.08604 (2022) - 2021
- [j58]Zhichao Lu, Gautam Sreekumar, Erik D. Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, Vishnu Naresh Boddeti:
Neural Architecture Transfer. IEEE Trans. Pattern Anal. Mach. Intell. 43(9): 2971-2989 (2021) - [j57]Chaoda Peng, Hai-Lin Liu, Erik D. Goodman:
A Cooperative Evolutionary Framework Based on an Improved Version of Directed Weight Vectors for Constrained Multiobjective Optimization With Deceptive Constraints. IEEE Trans. Cybern. 51(11): 5546-5558 (2021) - [j56]Zhichao Lu, Ian Whalen, Yashesh D. Dhebar, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf, Vishnu Naresh Boddeti:
Multiobjective Evolutionary Design of Deep Convolutional Neural Networks for Image Classification. IEEE Trans. Evol. Comput. 25(2): 277-291 (2021) - [c86]Kalyanmoy Deb, Sukrit Mittal, Dhish Kumar Saxena, Erik D. Goodman:
Embedding a Repair Operator in Evolutionary Single and Multi-objective Algorithms - An Exploitation-Exploration Perspective. EMO 2021: 89-101 - [c85]Abhiroop Ghosh, Kalyanmoy Deb, Ronald C. Averill, Erik D. Goodman:
Combining User Knowledge and Online Innovization for Faster Solution to Multi-objective Design Optimization Problems. EMO 2021: 102-114 - [c84]Shuwei Zhu, Lihong Xu, Erik D. Goodman, Kalyanmoy Deb, Zhichao Lu:
The (M-1)+1 Framework of Relaxed Pareto Dominance for Evolutionary Many-Objective Optimization. EMO 2021: 349-361 - 2020
- [j55]Francisco Fernández de Vega, Gustavo Olague, Daniel Lanza, Francisco Chávez de la O, Wolfgang Banzhaf, Erik D. Goodman, Jose Menendez-Clavijo, Axel Martinez:
Time and Individual Duration in Genetic Programming. IEEE Access 8: 38692-38713 (2020) - [j54]Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Caimin Wei, Qingfu Zhang, Kalyanmoy Deb, Erik D. Goodman:
Difficulty Adjustable and Scalable Constrained Multiobjective Test Problem Toolkit. Evol. Comput. 28(3): 339-378 (2020) - [j53]Shuwei Zhu, Lihong Xu, Erik D. Goodman:
Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy. Knowl. Based Syst. 188 (2020) - [j52]Matt Ryerkerk, Ronald C. Averill, Kalyanmoy Deb, Erik D. Goodman:
A novel selection mechanism for evolutionary algorithms with metameric variable-length representations. Soft Comput. 24(21): 16439-16452 (2020) - [j51]Chaoda Peng, Hai-Lin Liu, Erik D. Goodman:
Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance. Swarm Evol. Comput. 55: 100676 (2020) - [j50]Leilei Cao, Lihong Xu, Erik D. Goodman, Chunteng Bao, Shuwei Zhu:
Evolutionary Dynamic Multiobjective Optimization Assisted by a Support Vector Regression Predictor. IEEE Trans. Evol. Comput. 24(2): 305-319 (2020) - [c83]Abhiroop Ghosh, Erik D. Goodman, Kalyanmoy Deb, Ronald C. Averill, Alejandro Diaz:
A Large-scale Bi-objective Optimization of Solid Rocket Motors Using Innovization. CEC 2020: 1-8 - [c82]Zhichao Lu, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf, Vishnu Naresh Boddeti:
NSGANetV2: Evolutionary Multi-objective Surrogate-Assisted Neural Architecture Search. ECCV (1) 2020: 35-51 - [c81]Zhichao Lu, Ian Whalen, Yashesh D. Dhebar, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf, Vishnu Naresh Boddeti:
NSGA-Net: Neural Architecture Search using Multi-Objective Genetic Algorithm (Extended Abstract). IJCAI 2020: 4750-4754 - [e3]Wolfgang Banzhaf, Erik D. Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzel:
Genetic Programming Theory and Practice XVII [GPTP 2019, Michigan State University, East Lansing, Michigan, USA, May 16-19, 2019]. Springer 2020, ISBN 978-3-030-39957-3 [contents] - [i14]Francisco Fernández de Vega, Gustavo Olague, Francisco Chávez de la O, Daniel Lanza, Wolfgang Banzhaf, Erik D. Goodman:
It is Time for New Perspectives on How to Fight Bloat in GP. CoRR abs/2005.00603 (2020) - [i13]Zhichao Lu, Gautam Sreekumar, Erik D. Goodman, Wolfgang Banzhaf, Kalyanmoy Deb, Vishnu Naresh Boddeti:
Neural Architecture Transfer. CoRR abs/2005.05859 (2020) - [i12]Zhichao Lu, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf, Vishnu Naresh Boddeti:
NSGANetV2: Evolutionary Multi-Objective Surrogate-Assisted Neural Architecture Search. CoRR abs/2007.10396 (2020) - [i11]Sukrit Mittal, Dhish Kumar Saxena, Kalyanmoy Deb, Erik D. Goodman:
Enhanced Innovized Repair Operator for Evolutionary Multi- and Many-objective Optimization. CoRR abs/2011.10760 (2020)
2010 – 2019
- 2019
- [j49]Zhun Fan, Yi Fang, Wenji Li, Xinye Cai, Caimin Wei, Erik D. Goodman:
MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems. Appl. Soft Comput. 74: 621-633 (2019) - [j48]Leilei Cao, Lihong Xu, Erik D. Goodman, Hui Li:
Decomposition-based evolutionary dynamic multiobjective optimization using a difference model. Appl. Soft Comput. 76: 473-490 (2019) - [j47]Yifan Li, Hai-Lin Liu, Erik D. Goodman:
Hyperplane-Approximation-Based Method for Many-Objective Optimization Problems with Redundant Objectives. Evol. Comput. 27(2): 313-344 (2019) - [j46]Leilei Cao, Lihong Xu, Erik D. Goodman:
A collaboration-based particle swarm optimizer with history-guided estimation for optimization in dynamic environments. Expert Syst. Appl. 120: 1-13 (2019) - [j45]Chunteng Bao, Lihong Xu, Erik D. Goodman:
A new dominance-relation metric balancing convergence and diversity in multi- and many-objective optimization. Expert Syst. Appl. 134: 14-27 (2019) - [j44]Matt Ryerkerk, Ronald C. Averill, Kalyanmoy Deb, Erik D. Goodman:
A survey of evolutionary algorithms using metameric representations. Genet. Program. Evolvable Mach. 20(4): 441-478 (2019) - [j43]Chunteng Bao, Lihong Xu, Erik D. Goodman:
A novel two-archive matching-based algorithm for multi- and many-objective optimization. Inf. Sci. 497: 106-128 (2019) - [j42]Leilei Cao, Lihong Xu, Erik D. Goodman:
A collaboration-based particle swarm optimizer for global optimization problems. Int. J. Mach. Learn. Cybern. 10(6): 1279-1300 (2019) - [j41]Zhun Fan, Wenji Li, Xinye Cai, Han Huang, Yi Fang, Yugen You, Jiajie Mo, Caimin Wei, Erik D. Goodman:
An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions. Soft Comput. 23(23): 12491-12510 (2019) - [j40]Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Caimin Wei, Qingfu Zhang, Kalyanmoy Deb, Erik D. Goodman:
Push and pull search for solving constrained multi-objective optimization problems. Swarm Evol. Comput. 44: 665-679 (2019) - [j39]Zhun Fan, Yugen You, Xinye Cai, Haodong Zheng, Guijie Zhu, Wenji Li, Akhil Garg, Kalyanmoy Deb, Erik D. Goodman:
Analysis and multi-objective optimization of a kind of teaching manipulator. Swarm Evol. Comput. 50 (2019) - [c80]Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh D. Dhebar, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf:
NSGA-Net: neural architecture search using multi-objective genetic algorithm. GECCO 2019: 419-427 - [c79]Francisco Fernández de Vega, Gustavo Olague, Francisco Chávez de la O, Daniel Lanza, Wolfgang Banzhaf, Erik D. Goodman:
It Is Time for New Perspectives on How to Fight Bloat in GP. GPTP 2019: 25-38 - [c78]Chaoda Peng, Hai-Lin Liu, Erik D. Goodman:
Investigating the Performance of Evolutionary Algorithms on Constrained Multi-objective Optimization Problems with Deceptive Infeasible Regions. SSCI 2019: 3047-3052 - [e2]Kalyanmoy Deb, Erik D. Goodman, Carlos A. Coello Coello, Kathrin Klamroth, Kaisa Miettinen, Sanaz Mostaghim, Patrick M. Reed:
Evolutionary Multi-Criterion Optimization - 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, Proceedings. Lecture Notes in Computer Science 11411, Springer 2019, ISBN 978-3-030-12597-4 [contents] - [i10]Zhichao Lu, Ian Whalen, Yashesh D. Dhebar, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf, Vishnu Naresh Boddeti:
Multi-Criterion Evolutionary Design of Deep Convolutional Neural Networks. CoRR abs/1912.01369 (2019) - 2018
- [j38]Jonas Schwaab, Kalyanmoy Deb, Erik D. Goodman, Sven Lautenbach, Maarten van Strien, Adrienne Grêt-Regamey:
Improving the performance of genetic algorithms for land-use allocation problems. Int. J. Geogr. Inf. Sci. 32(5): 907-930 (2018) - [j37]Yuanping Su, Lihong Xu, Erik D. Goodman:
Control allocation-based adaptive control for greenhouse climate. Int. J. Syst. Sci. 49(6): 1146-1163 (2018) - [j36]Leilei Cao, Lihong Xu, Erik D. Goodman:
A neighbor-based learning particle swarm optimizer with short-term and long-term memory for dynamic optimization problems. Inf. Sci. 453: 463-485 (2018) - [j35]Erik D. Goodman:
The Path to DevOps. IEEE Softw. 35(5): 71-75 (2018) - [j34]Zhun Fan, Jiewei Lu, Maoguo Gong, Honghui Xie, Erik D. Goodman:
Automatic Tobacco Plant Detection in UAV Images via Deep Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 11(3): 876-887 (2018) - [c77]José R. Llera, Erik D. Goodman, Erik S. Runkle, Lihong Xu:
Improving greenhouse environmental control using crop-model-driven multi-objective optimization. GECCO (Companion) 2018: 292-293 - [c76]Leilei Cao, Lihong Xu, Erik D. Goodman, Shuwei Zhu, Hui Li:
A differential prediction model for evolutionary dynamic multiobjective optimization. GECCO 2018: 601-608 - [c75]José R. Llera, Kalyanmoy Deb, Erik S. Runkle, Lihong Xu, Erik D. Goodman:
Evolving and Comparing Greenhouse Control Strategies using Model-Based Multi-Objective Optimization. SSCI 2018: 1929-1936 - [i9]Zhun Fan, Yugen You, Haodong Zheng, Guijie Zhu, Wenji Li, Shen Chen, Kalyanmoy Deb, Erik D. Goodman:
Modeling and Multi-objective Optimization of a Kind of Teaching Manipulator. CoRR abs/1801.10599 (2018) - [i8]Zhun Fan, Yi Fang, Wenji Li, Xinye Cai, Caimin Wei, Erik D. Goodman:
MOEA/D with Angle-based Constrained Dominance Principle for Constrained Multi-objective Optimization Problems. CoRR abs/1802.03608 (2018) - [i7]Zhun Fan, Jiewei Lu, Ce Zheng, Jingan Feng, Longtao Huang, Wenji Li, Erik D. Goodman:
Automated Strabismus Detection based on Deep neural networks for Telemedicine Applications. CoRR abs/1809.02940 (2018) - [i6]Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh D. Dhebar, Kalyanmoy Deb, Erik D. Goodman, Wolfgang Banzhaf:
NSGA-NET: A Multi-Objective Genetic Algorithm for Neural Architecture Search. CoRR abs/1810.03522 (2018) - [i5]Zhun Fan, Wenji Li, Zhaojun Wang, Yutong Yuan, Fuzan Sun, Zhi Yang, Jie Ruan, Zhaocheng Li, Erik D. Goodman:
Embedding Push and Pull Search in the Framework of Differential Evolution for Solving Constrained Single-objective Optimization Problems. CoRR abs/1812.06381 (2018) - 2017
- [j33]Lei Chen, Hai-Lin Liu, Zhun Fan, Shengli Xie, Erik D. Goodman:
Modeling the Tracking Area Planning Problem Using an Evolutionary Multi-Objective Algorithm. IEEE Comput. Intell. Mag. 12(1): 29-41 (2017) - [j32]Matthew L. Ryerkerk, Ronald C. Averill, Kalyanmoy Deb, Erik D. Goodman:
Solving metameric variable-length optimization problems using genetic algorithms. Genet. Program. Evolvable Mach. 18(2): 247-277 (2017) - [j31]Chunteng Bao, Lihong Xu, Erik D. Goodman, Leilei Cao:
A novel non-dominated sorting algorithm for evolutionary multi-objective optimization. J. Comput. Sci. 23: 31-43 (2017) - [j30]Xinye Cai, Xin Cheng, Zhun Fan, Erik D. Goodman, Lisong Wang:
An adaptive memetic framework for multi-objective combinatorial optimization problems: studies on software next release and travelling salesman problems. Soft Comput. 21(9): 2215-2236 (2017) - [j29]Hai-Lin Liu, Lei Chen, Kalyanmoy Deb, Erik D. Goodman:
Investigating the Effect of Imbalance Between Convergence and Diversity in Evolutionary Multiobjective Algorithms. IEEE Trans. Evol. Comput. 21(3): 408-425 (2017) - [j28]Jonas Schwaab, Kalyanmoy Deb, Erik D. Goodman, Sven Lautenbach, Maarten van Strien, Adrienne Grêt-Regamey:
Reducing the loss of agricultural productivity due to compact urban development in municipalities of Switzerland. Comput. Environ. Urban Syst. 65: 162-177 (2017) - [c74]Daniel J. Couvertier, Erik D. Goodman, Kalyanmoy Deb:
Towards an epigenetics-inspired control system for power dispatch problem. GECCO (Companion) 2017: 147-148 - [c73]Jonas Schwaab, Kalyanmoy Deb, Erik D. Goodman, Sven Lautenbach, Maarten van Strien, Adrienne Grêt-Regamey:
Short versus long-term urban planning using multi-objective optimization. GECCO (Companion) 2017: 305-306 - [c72]Zhichao Lu, Kalyanmoy Deb, Erik D. Goodman, John M. Wassick:
Solving a supply-chain management problem using a bilevel approach. GECCO 2017: 1185-1192 - [c71]Leilei Cao, Lihong Xu, Erik D. Goodman, Hui Li:
A First-Order Difference Model-Based Evolutionary Dynamic Multiobjective Optimization. SEAL 2017: 644-655 - [i4]Zhun Fan, Wenji Li, Xinye Cai, Han Huang, Yi Fang, Yugen You, Jiajie Mo, Caimin Wei, Erik D. Goodman:
An Improved Epsilon Constraint-handling Method in MOEA/D for CMOPs with Large Infeasible Regions. CoRR abs/1707.08767 (2017) - [i3]Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Caimin Wei, Qingfu Zhang, Kalyanmoy Deb, Erik D. Goodman:
Push and Pull Search for Solving Constrained Multi-objective Optimization Problems. CoRR abs/1709.05915 (2017) - 2016
- [j27]Leilei Cao, Lihong Xu, Erik D. Goodman:
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems. Comput. Intell. Neurosci. 2016: 2565809:1-2565809:10 (2016) - [j26]Chenwen Zhu, Lihong Xu, Erik D. Goodman:
Generalization of Pareto-Optimality for Many-Objective Evolutionary Optimization. IEEE Trans. Evol. Comput. 20(2): 299-315 (2016) - [i2]Zhun Fan, Wenji Li, Xinye Cai, Hui Li, Kaiwen Hu, Qingfu Zhang, Kalyanmoy Deb, Erik D. Goodman:
Difficulty Adjustable and Scalable Constrained Multi-objective Test Problem Toolkit. CoRR abs/1612.07603 (2016) - 2015
- [j25]Jean-François Dupuis, Zhun Fan, Erik D. Goodman:
Evolutionary design of discrete controllers for hybrid mechatronic systems. Int. J. Syst. Sci. 46(2): 303-316 (2015) - [j24]Dawei Li, Lihong Xu, Chengxiang Tan, Erik D. Goodman, Daichang Fu, Longjiao Xin:
Digitization and Visualization of Greenhouse Tomato Plants in Indoor Environments. Sensors 15(2): 4019-4051 (2015) - [c70]Zhun Fan, Han Huang, Wenji Li, Shuxiang Xie, Xinye Cai, Erik D. Goodman:
An opposition-based repair operator for multi-objective evolutionary algorithm in constrained optimization problems. ICNC 2015: 330-336 - [c69]Matthew Durak, Nicholas Durak, Erik D. Goodman, Robert Till:
Optimizing an agent-based traffic evacuation model using genetic algorithms. WSC 2015: 288-299 - [i1]Zhun Fan, Wenji Li, Xinye Cai, Huibiao Lin, Shuxiang Xie, Erik D. Goodman:
A New Repair Operator for Multi-objective Evolutionary Algorithm in Constrained Optimization Problems. CoRR abs/1504.00154 (2015) - 2014
- [j23]Dawei Li, Lihong Xu, Erik D. Goodman:
On-line EM Variants for Multivariate Normal Mixture Model in Background Learning and Moving Foreground Detection. J. Math. Imaging Vis. 48(1): 114-133 (2014) - [j22]Haigen Hu, Lihong Xu, Erik D. Goodman, Songwei Zeng:
NSGA-II-based nonlinear PID controller tuning of greenhouse climate for reducing costs and improving performances. Neural Comput. Appl. 24(3-4): 927-936 (2014) - [c68]Jinyao Yan, John R. Deller Jr., Meng Yao, Erik D. Goodman:
Evolutionary model selection for identification of nonlinear parametric systems. ChinaSIP 2014: 693-697 - [c67]Erik D. Goodman:
Introduction to genetic algorithms. GECCO (Companion) 2014: 205-226 - [c66]Blair D. Fleet, Jinyao Yan, David B. Knoester, Meng Yao, John R. Deller Jr., Erik D. Goodman:
Breast Cancer Detection Using Haralick Features of Images Reconstructed from Ultra Wideband Microwave Scans. CLIP@MICCAI 2014: 9-16 - 2013
- [j21]Dawei Li, Lihong Xu, Erik D. Goodman, Yuan Xu, Yang Wu:
Integrating a statistical background- foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. Integr. Comput. Aided Eng. 20(3): 201-216 (2013) - [j20]Zhenhua Li, Erik D. Goodman:
Practical Search Index as a Hardness Measure for Genetic Algorithms. J. Comput. 8(8): 2034-2041 (2013) - [j19]Guojing Fan, Erik D. Goodman, Zhijun Liu:
AHP (Analytic Hierarchy Process) and Computer Analysis Software Used in Tourism Safety. J. Softw. 8(12): 3114-3119 (2013) - [j18]Dawei Li, Lihong Xu, Erik D. Goodman:
Illumination-Robust Foreground Detection in a Video Surveillance System. IEEE Trans. Circuits Syst. Video Technol. 23(10): 1637-1650 (2013) - [c65]Jinyao Yan, John R. Deller Jr., Blair D. Fleet, Erik D. Goodman, Meng Yao:
Evolutionary identification of nonlinear parametric models with a set-theoretic fitness criterion. ChinaSIP 2013: 44-48 - [c64]Erik D. Goodman:
Introduction to genetic algorithms. GECCO (Companion) 2013: 225-246 - 2012
- [j17]Jean-François Dupuis, Zhun Fan, Erik D. Goodman:
Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System. IEEE Trans. Evol. Comput. 16(3): 391-405 (2012) - [c63]Oliver Chikumbo, Erik D. Goodman, Kalyanmoy Deb:
Approximating a multi-dimensional Pareto front for a land use management problem: A modified MOEA with an epigenetic silencing metaphor. IEEE Congress on Evolutionary Computation 2012: 1-9 - [c62]Erik D. Goodman:
Introduction to genetic algorithms. GECCO (Companion) 2012: 671-692 - [c61]Matt Ryerkerk, Ronald C. Averill, Kalyanmoy Deb, Erik D. Goodman:
Meaningful representation and recombination of variable length genomes. GECCO (Companion) 2012: 1471-1472 - [c60]Dawei Li, Lihong Xu, Erik D. Goodman:
Real-Time Statistical Background Learning for Foreground Detection under Unstable Illuminations. ICMLA (1) 2012: 468-472 - 2011
- [c59]Erik D. Goodman:
Introduction to genetic algorithms. GECCO (Companion) 2011: 839-860 - 2010
- [j16]Kisung Seo, Soohwan Hyun, Erik D. Goodman:
Genetic Programming-Based Automatic Gait Generation in Joint Space for a Quadruped Robot. Adv. Robotics 24(15): 2199-2214 (2010) - [c58]Prakarn Unachak, Erik D. Goodman:
Solving multiobjective flexible job-shop scheduling using an adaptive representation. GECCO 2010: 737-742 - [c57]Haigen Hu, Lihong Xu, Erik D. Goodman:
A control optimization algorithm for greenhouse climate control problems. GECCO (Companion) 2010: 2081-2082 - [c56]Erik D. Goodman:
Introduction to genetic algorithms. GECCO (Companion) 2010: 2121-2136 - [c55]Dawei Li, Lihong Xu, Erik D. Goodman:
Online background learning for illumination-robust foreground detection. ICARCV 2010: 1093-1100
2000 – 2009
- 2009
- [c54]Jean-François Dupuis, Zhun Fan, Erik D. Goodman:
Evolved finite state controller for hybrid system. GEC Summit 2009: 105-112 - [c53]Qingsong Hu, Lihong Xu, Erik D. Goodman:
Non-even spread NSGA-II and its application to conflicting multi-objective compatible control. GEC Summit 2009: 223-230 - [c52]Jinchao Liu, Zhun Fan, Erik D. Goodman:
SRDE: an improved differential evolution based on stochastic ranking. GEC Summit 2009: 345-352 - [c51]Prakarn Unachak, Erik D. Goodman:
Adaptive representation for flexible job-shop scheduling and rescheduling. GEC Summit 2009: 511-516 - [c50]Lihong Xu, Bingkun Zhu, Erik D. Goodman:
An improved MOCC with feedback control structure based on preference. GEC Summit 2009: 651-656 - [c49]John C. Oliva, Erik D. Goodman:
Evolutionary search and convertible agents for the simultaneous type and dimensional synthesis of planar mechanisms. GECCO 2009: 1577-1584 - [c48]Jinchao Liu, Zhun Fan, Erik D. Goodman:
SRaDE: an adaptive differential evolution based on stochastic ranking. GECCO 2009: 1871-1872 - [c47]Qingsong Hu, Lihong Xu, Erik D. Goodman:
Dynamic multi-objective control of IPMCs propelled robot fish based on NSGA-II. GECCO 2009: 1927-1928 - [c46]Kisung Seo, Soohwan Hyun, Erik D. Goodman:
Tree-structure-aware GP operators for automatic gait generation of quadruped robot. GECCO (Companion) 2009: 2155-2160 - [c45]Ping Wu, Erik D. Goodman, Tang Jiang, Min Pei:
A hybrid GA-based fuzzy classifying approach to urinary analysis modeling. GECCO (Companion) 2009: 2671-2678 - [c44]Erik D. Goodman:
Introduction to genetic algorithms. GECCO (Companion) 2009: 2753-2774 - [e1]Lihong Xu, Erik D. Goodman, Guoliang Chen, L. Darrell Whitley, Yongsheng Ding:
Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC Summit 2009, Shanghai, China, June 12-14, 2009. ACM 2009, ISBN 978-1-60558-326-6 [contents] - 2008
- [j15]Jianjun Hu, Erik D. Goodman, Shaobo Li, Ronald C. Rosenberg:
Automated synthesis of mechanical vibration absorbers using genetic programming. Artif. Intell. Eng. Des. Anal. Manuf. 22(3): 207-217 (2008) - [j14]Jiachuan Wang, Zhun Fan, Janis P. Terpenny, Erik D. Goodman:
Cooperative body-brain coevolutionary synthesis of mechatronic systems. Artif. Intell. Eng. Des. Anal. Manuf. 22(3): 219-234 (2008) - [j13]Zhun Fan, Jiachuan Wang, Sofiane Achiche, Erik D. Goodman, Ronald C. Rosenberg:
Structured synthesis of MEMS using evolutionary approaches. Appl. Soft Comput. 8(1): 579-589 (2008) - [c43]Zhenhua Li, Erik D. Goodman:
A practical search index and population size analysis based on the building block hypothesis. GECCO 2008: 1123-1124 - [c42]Erik D. Goodman:
Introduction to genetic algorithms. GECCO (Companion) 2008: 2277-2298 - [c41]Zhenhua Li, Erik D. Goodman:
Exploring Building Blocks through Crossover. ISICA 2008: 707-714 - [p4]Erik D. Goodman, Ronald C. Averill, Ranny Sidhu:
Multi-Level Decomposition for Tractability in Structural Design Optimization. Evolutionary Computation in Practice 2008: 41-62 - 2007
- [j12]Hiram A. Firpi, Erik D. Goodman, Javier R. Echauz:
Epileptic Seizure Detection Using Genetically Programmed Artificial Features. IEEE Trans. Biomed. Eng. 54(2): 212-224 (2007) - [c40]Lihong Xu, Qingsong Hu, Erik D. Goodman:
Two layer iterative multi-objective compatible control algorithm. CDC 2007: 2992-2997 - [c39]Lihong Xu, Qingsong Hu, Erik D. Goodman:
A compatible energy-saving control algorithm for a class of conflicted multi-objective control problem. IEEE Congress on Evolutionary Computation 2007: 4446-4453 - [c38]Zhenhua Li, Erik D. Goodman:
Learning building block structure from crossover failure. GECCO 2007: 1280-1287 - [c37]Sofiane Achiche, Wei Wang, Zhun Fan, Ali Gürcan Özkil, Torben Sørensen, Jiachuan Wang, Erik D. Goodman:
Genetically generated double-level fuzzy controller with a fuzzy adjustment strategy. GECCO 2007: 1880-1887 - [c36]Erik D. Goodman:
Introduction to genetic algorithms. GECCO (Companion) 2007: 3205-3224 - [c35]Daniel Baker, Erik D. Goodman, Patrick Kane, Michael A. Shanblatt:
A Paradigm of Government/Industry/University Cooperation: A PSoC Controller for a NASA Robotic Arm. MSE 2007: 129-130 - [p3]Jianjun Hu, Shaobo Li, Erik D. Goodman:
Evolutionary Robust Design of Analog Filters Using Genetic Programming. Evolutionary Computation in Dynamic and Uncertain Environments 2007: 479-496 - [p2]Zhun Fan, Jiachuan Wang, Min Wen, Erik D. Goodman, Ronald C. Rosenberg:
An Evolutionary Approach For Robust Layout Synthesis of MEMS. Evolutionary Computation in Dynamic and Uncertain Environments 2007: 519-542 - 2006
- [p1]Zhun Fan, Mogens Andreasen, Jiachuan Wang, Erik D. Goodman, Lars Hein:
Towards an Evolvable Engineering Design Framework for Interactive Computer Design Support of Mechatronic Systems. Integrated Intelligent Systems for Engineering Design 2006: 182-198 - 2005
- [j11]Jianjun Hu, Erik D. Goodman, Kisung Seo, Zhun Fan, Rondal Rosenberg:
The Hierarchical Fair Competition (HFC) Framework for Sustainable Evolutionary Algorithms. Evol. Comput. 13(2): 241-277 (2005) - [j10]Jiachuan Wang, Zhun Fan, Janis P. Terpenny, Erik D. Goodman:
Knowledge interaction with genetic programming in mechatronic systems design using bond graphs. IEEE Trans. Syst. Man Cybern. Part C 35(2): 172-182 (2005) - [c34]Hiram A. Firpi, Erik D. Goodman, Javier R. Echauz:
On Prediction of Epileptic Seizures by Computing Multiple Genetic Programming Artificial Features. EuroGP 2005: 321-330 - [c33]Hiram A. Firpi, Erik D. Goodman, Javier R. Echauz:
Epileptic seizure detection by means of genetically programmed artificial features. GECCO 2005: 461-466 - [c32]Jianjun Hu, Xiwei Zhong, Erik D. Goodman:
Open-ended robust design of analog filters using genetic programming. GECCO 2005: 1619-1626 - [c31]Kisung Seo, Erik D. Goodman, Ronald C. Rosenberg:
Design of air pump system using bond graph and genetic programming method. GECCO 2005: 2215-2216 - 2004
- [j9]Erik D. Goodman:
A Word from the Chair of ISGEC. Genet. Program. Evolvable Mach. 5(1): 9 (2004) - [c30]Hiram A. Firpi, Erik D. Goodman:
Swarmed Feature Selection. AIPR 2004: 112-118 - [c29]Hiram A. Firpi, Erik D. Goodman:
Designing Templates for Cellular Neural Networks Using Particle Swarm Optimization. AIPR 2004: 119-123 - [c28]Jianjun Hu, Erik D. Goodman, Ronald C. Rosenberg:
Topological search in automated mechatronic system synthesis using bond graphs and genetic programming. ACC 2004: 5628-5634 - [c27]Jianjun Hu, Erik D. Goodman:
Wireless access point configuration by genetic programming. IEEE Congress on Evolutionary Computation 2004: 1178-1184 - [c26]Zhun Fan, Erik D. Goodman, Jiachuan Wang, Ronald C. Rosenberg, Kisung Seo, Jianjun Hu:
Hierarchical evolutionary synthesis of MEMS. IEEE Congress on Evolutionary Computation 2004: 2320-2327 - [c25]Kisung Seo, Jianjun Hu, Zhun Fan, Erik D. Goodman, Ronald C. Rosenberg:
Hierarchical Breeding Control for Efficient Topology/Parameter Evolution. GECCO (2) 2004: 722-723 - [c24]Bulent Buyukbozkirli, Erik D. Goodman:
A Statistical Model of GA Dynamics for the OneMax Problem. GECCO (1) 2004: 935-946 - [c23]Jianjun Hu, Erik D. Goodman:
Robust and Efficient Genetic Algorithms with Hierarchical Niching and a Sustainable Evolutionary Computation Model. GECCO (1) 2004: 1220-1232 - 2003
- [c22]Jianjun Hu, Kisung Seo, Zhun Fan, Ronald C. Rosenberg, Erik D. Goodman:
HEMO: A Sustainable Multi-objective Evolutionary Optimization Framework. GECCO 2003: 1029-1040 - [c21]Kisung Seo, Zhun Fan, Jianjun Hu, Erik D. Goodman, Ronald C. Rosenberg:
Dense and Switched Modular Primitives for Bond Graph Model Design. GECCO 2003: 1764-1775 - [c20]Zhun Fan, Kisung Seo, Jianjun Hu, Ronald C. Rosenberg, Erik D. Goodman:
System-Level Synthesis of MEMS via Genetic Programming and Bond Graphs. GECCO 2003: 2058-2071 - [c19]Zhijian Huang, Min Pei, Erik D. Goodman, Yong Huang, Gaoping Li:
Genetic Algorithm Optimized Feature Transformation - A Comparison with Different Classifiers. GECCO 2003: 2121-2133 - 2002
- [j8]Kisung Seo, Jianjun Hu, Zhun Fan, Erik D. Goodman, Ronald C. Rosenberg:
Automated design approaches for multi-domain dynamic systems using bond graphs and genetic programming. Int. J. Comput. Syst. Signals 3(1): 55-70 (2002) - [c18]Jianjun Hu, Erik D. Goodman:
The hierarchical fair competition (HFC) model for parallel evolutionary algorithms. IEEE Congress on Evolutionary Computation 2002: 49-54 - [c17]Jianjun Hu, Erik D. Goodman, Kisung Seo, Min Pei:
Adaptive Hierarchical Fair Competition (AHFC) Model For Parallel Evolutionary Algorithms. GECCO 2002: 772-779 - [c16]Jianjun Hu, Kisung Seo, Shaobo Li, Zhun Fan, Ronald C. Rosenberg, Erik D. Goodman:
Structure Fitness Sharing (SFS) For Evolutionary Design By Genetic Programming. GECCO 2002: 780-787 - [c15]Zhun Fan, Kisung Seo, Ronald C. Rosenberg, Jianjun Hu, Erik D. Goodman:
Exploring Multiple Design Topologies Using Genetic Programming And Bond Graphs. GECCO 2002: 1073-1080 - 2001
- [c14]Charles Steinfield, Marleen Huysman, Kenneth David, Chyng-Yang Jang, Jan Poot, Mirjam Huis in 't Veld, Ingrid Mulder, Erik D. Goodman, John Lloyd, Timothy Hinds, J. H. Erik Andriessen, Kirsten Jarvis, Klaas van der Werff, Angel Cabrera:
New Methods for Studying Global Virtual Teams: Towards a Multi-Faceted Approach. HICSS 2001 - 2000
- [j7]Michael L. Raymer, William F. Punch III, Erik D. Goodman, Leslie A. Kuhn, Anil K. Jain:
Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4(2): 164-171 (2000)
1990 – 1999
- 1999
- [j6]David Eby, Ronald C. Averill, William F. Punch III, Erik D. Goodman:
Optimal design of flywheels using an injection island genetic algorithm. Artif. Intell. Eng. Des. Anal. Manuf. 13(5): 327-340 (1999) - [c13]Arnold L. Patton, Erik D. Goodman, William F. Punch III:
Scheduling variance loss using population level annealing for evolutionary computation. CEC 1999: 760-767 - 1998
- [j5]A. A. Ligun, A. A. Shumeiko, Stephen P. Radzevich, Erik D. Goodman:
Asymptotically optimum recovery of smooth contours by Bézier curve. Comput. Aided Geom. Des. 15(5): 495-506 (1998) - [c12]Arnold L. Patton, Terrence Dexter, Erik D. Goodman, William F. Punch III:
On the Application of Cohort-Driven Operators to Continuous Optimization Problems Using Evolutionary Computation. Evolutionary Programming 1998: 671-681 - [c11]Stepan P. Radzevich, Erik D. Goodman:
Efficiency of Multi-Axis NC Machining of Sculpted Part Surfaces. SSM 1998: 42-58 - 1997
- [j4]A. A. Ligun, A. A. Shumeiko, S. P. Radzevitch, Erik D. Goodman:
Asymptotically optimal disposition of tangent points for approximation of smooth convex surfaces by polygonal functions. Comput. Aided Geom. Des. 14(6): 533-546 (1997) - [c10]Shyh-Chang Lin, Erik D. Goodman, William F. Punch III:
Investigating Parallel Genetic Algorithms on Job Shop Scheduling Problems. Evolutionary Programming 1997: 383-393 - [c9]Shyh-Chang Lin, Erik D. Goodman, William F. Punch III:
A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problem. ICGA 1997: 481-488 - [c8]Michael L. Raymer, William F. Punch III, Erik D. Goodman, Paul C. Sanschagrin, Leslie A. Kuhn:
Simultanous Feature Extraction and Selection Using a Genetic Algorithm. ICGA 1997: 561-567 - [c7]Gang Wang, Erik D. Goodman, William F. Punch III:
Toward the Optimization of a Class of Black Box Optimization Algorithms. ICTAI 1997: 348-356 - 1995
- [j3]William F. Punch III, Ronald C. Averill, Erik D. Goodman, Shyh-Chang Lin, Ying Ding:
Using Genetic Algorithms to Design Laminated Composite Structures. IEEE Expert 10(1): 42-49 (1995) - [c6]Arnold L. Patton, William F. Punch III, Erik D. Goodman:
A Standard GA Approach to Native Protein Conformation Prediction. ICGA 1995: 574-581 - 1994
- [c5]Shyh-Chang Lin, William F. Punch III, Erik D. Goodman:
Coarse-grain parallel genetic algorithms: categorization and new approach. SPDP 1994: 28-37 - 1993
- [c4]William F. Punch III, Erik D. Goodman, Min Pei, Lai Chia-Shun, Paul D. Hovland, Richard J. Enbody:
Further Research on Feature Selection and Classification Using Genetic Algorithms. ICGA 1993: 557-564 - 1991
- [c3]Erik D. Goodman, Leslie T. W. Hoppensteradt:
A method for accurate simulation of robotic spray application using empirical parameterization. ICRA 1991: 1357-1368 - 1990
- [j2]James H. Oliver, Erik D. Goodman:
Direct dimensional NC verification. Comput. Aided Des. 22(1): 3-9 (1990)
1980 – 1989
- 1988
- [c2]Adrian V. Sannier II, Erik D. Goodman:
Midgard: A Genetic Approach to Adaptive Load Balancing for Distributed Systems. ML 1988: 174-180 - 1987
- [c1]Adrian V. Sannier II, Erik D. Goodman:
Genetic Learning Procedures in Distributed Environments. ICGA 1987: 162-169
1970 – 1979
- 1970
- [j1]Erik D. Goodman:
R70-18 Real-Time Computation by n-Dimensional Iterative Arrays of Finite-State Machines. IEEE Trans. Computers 19(7): 657-658 (1970)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-04 03:45 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint