default search action
Alexey Tumanov
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c35]Amey Agrawal, Sameer Reddy, Satwik Bhattamishra, Venkata Prabhakara Sarath Nookala, Vidushi Vashishth, Kexin Rong, Alexey Tumanov:
Inshrinkerator: Compressing Deep Learning Training Checkpoints via Dynamic Quantization. SoCC 2024: 1012-1031 - [c34]Alind Khare, Animesh Agrawal, Aditya Annavajjala, Payman Behnam, Myungjin Lee, Hugo Latapie, Alexey Tumanov:
SuperFedNAS: Cost-Efficient Federated Neural Architecture Search for On-device Inference. ECCV (79) 2024: 161-179 - [c33]Aditya Annavajjala, Alind Khare, Animesh Agrawal, Igor Fedorov, Hugo Latapie, Myungjin Lee, Alexey Tumanov:
DεpS: Delayed ε-Shrinking for Faster Once-for-All Training. ECCV (89) 2024: 315-331 - [c32]Payman Behnam, Uday Kamal, Ali Shafiee, Alexey Tumanov, Saibal Mukhopadhyay:
Harmonica: Hybrid Accelerator to Overcome Imperfections of Mixed-signal DNN Accelerators. IPDPS 2024: 619-630 - [c31]Amey Agrawal, Nitin Kedia, Jayashree Mohan, Ashish Panwar, Nipun Kwatra, Bhargav S. Gulavani, Ramachandran Ramjee, Alexey Tumanov:
VIDUR: A Large-Scale Simulation Framework for LLM Inference. MLSys 2024 - [c30]Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gulavani, Alexey Tumanov, Ramachandran Ramjee:
Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve. OSDI 2024: 117-134 - [i25]Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S. Gulavani, Alexey Tumanov, Ramachandran Ramjee:
Taming Throughput-Latency Tradeoff in LLM Inference with Sarathi-Serve. CoRR abs/2403.02310 (2024) - [i24]Amey Agrawal, Nitin Kedia, Jayashree Mohan, Ashish Panwar, Nipun Kwatra, Bhargav S. Gulavani, Ramachandran Ramjee, Alexey Tumanov:
Vidur: A Large-Scale Simulation Framework For LLM Inference. CoRR abs/2405.05465 (2024) - [i23]Aditya Annavajjala, Alind Khare, Animesh Agrawal, Igor Fedorov, Hugo Latapie, Myungjin Lee, Alexey Tumanov:
DεS: Delayed ε-Shrinking for Faster Once-For-All Training. CoRR abs/2407.06167 (2024) - [i22]Amey Agrawal, Anmol Agarwal, Nitin Kedia, Jayashree Mohan, Souvik Kundu, Nipun Kwatra, Ramachandran Ramjee, Alexey Tumanov:
Metron: Holistic Performance Evaluation Framework for LLM Inference Systems. CoRR abs/2407.07000 (2024) - [i21]Amey Agrawal, Junda Chen, Íñigo Goiri, Ramachandran Ramjee, Chaojie Zhang, Alexey Tumanov, Esha Choukse:
Mnemosyne: Parallelization Strategies for Efficiently Serving Multi-Million Context Length LLM Inference Requests Without Approximations. CoRR abs/2409.17264 (2024) - 2023
- [j3]Payman Behnam, Jianming Tong, Alind Khare, Yangyu Chen, Yue Pan, Pranav Gadikar, Abhimanyu Bambhaniya, Tushar Krishna, Alexey Tumanov:
Hardware-Software Co-Design for Real-Time Latency-Accuracy Navigation in Tiny Machine Learning Applications. IEEE Micro 43(6): 93-101 (2023) - [c29]Yanbo Xu, Shangqing Xu, Manav Ramprassad, Alexey Tumanov, Chao Zhang:
TransEHR: Self-Supervised Transformer for Clinical Time Series Data. ML4H@NeurIPS 2023: 623-635 - [c28]Payman Behnam, Alexey Tumanov, Tushar Krishna, Pranav Gadikar, Yangyu Chen, Jianming Tong, Yue Pan, Abhimanyu Rajeshkumar Bambhaniya, Alind Khare:
Subgraph Stationary Hardware-Software Inference Co-Design. MLSys 2023 - [e1]Stefanos Laskaridis, Alexey Tumanov, Nathalie Baracaldo, Dimitrios Vytiniotis:
Proceedings of the 4th International Workshop on Distributed Machine Learning, DistributedML 2023, Paris, France, 8 December 2023. ACM 2023 [contents] - [i20]Alind Khare, Animesh Agrawal, Myungjin Lee, Alexey Tumanov:
SuperFed: Weight Shared Federated Learning. CoRR abs/2301.10879 (2023) - [i19]Amey Agrawal, Sameer Reddy, Satwik Bhattamishra, Venkata Prabhakara Sarath Nookala, Vidushi Vashishth, Kexin Rong, Alexey Tumanov:
DynaQuant: Compressing Deep Learning Training Checkpoints via Dynamic Quantization. CoRR abs/2306.11800 (2023) - [i18]Payman Behnam, Jianming Tong, Alind Khare, Yangyu Chen, Yue Pan, Pranav Gadikar, Abhimanyu Rajeshkumar Bambhaniya, Tushar Krishna, Alexey Tumanov:
Subgraph Stationary Hardware-Software Inference Co-Design. CoRR abs/2306.17266 (2023) - [i17]Debopam Sanyal, Jui-Tse Hung, Manav Agrawal, Prahlad Jasti, Shahab Nikkhoo, Somesh Jha, Tianhao Wang, Sibin Mohan, Alexey Tumanov:
Pareto-Secure Machine Learning (PSML): Fingerprinting and Securing Inference Serving Systems. CoRR abs/2307.01292 (2023) - [i16]Anshul Ahluwalia, Rohit Das, Payman Behnam, Alind Khare, Pan Li, Alexey Tumanov:
ABKD: Graph Neural Network Compression with Attention-Based Knowledge Distillation. CoRR abs/2310.15938 (2023) - [i15]Sachit Kuhar, Yash Jain, Alexey Tumanov:
Signed Binarization: Unlocking Efficiency Through Repetition-Sparsity Trade-Off. CoRR abs/2312.01581 (2023) - [i14]Alind Khare, Dhruv Garg, Sukrit Kalra, Snigdha Grandhi, Ion Stoica, Alexey Tumanov:
SuperServe: Fine-Grained Inference Serving for Unpredictable Workloads. CoRR abs/2312.16733 (2023) - 2022
- [c27]Romil Bhardwaj, Alexey Tumanov, Stephanie Wang, Richard Liaw, Philipp Moritz, Robert Nishihara, Ion Stoica:
ESCHER: expressive scheduling with ephemeral resources. SoCC 2022: 47-62 - [c26]Jun Shirako, Akihiro Hayashi, Sri Raj Paul, Alexey Tumanov, Vivek Sarkar:
Automatic Parallelization of Python Programs for Distributed Heterogeneous Computing. Euro-Par 2022: 350-366 - [c25]Yixuan Luo, Payman Behnam, Kiran Thorat, Zhuo Liu, Hongwu Peng, Shaoyi Huang, Shu Zhou, Omer Khan, Alexey Tumanov, Caiwen Ding, Tong Geng:
CoDG-ReRAM: An Algorithm-Hardware Co-design to Accelerate Semi-Structured GNNs on ReRAM. ICCD 2022: 280-289 - [c24]Yanbo Xu, Alind Khare, Glenn Matlin, Monish Ramadoss, Rishikesan Kamaleswaran, Chao Zhang, Alexey Tumanov:
UnfoldML: Cost-Aware and Uncertainty-Based Dynamic 2D Prediction for Multi-Stage Classification. NeurIPS 2022 - [i13]Jun Shirako, Akihiro Hayashi, Sri Raj Paul, Alexey Tumanov, Vivek Sarkar:
Automatic Parallelization of Python Programs for Distributed Heterogeneous Computing. CoRR abs/2203.06233 (2022) - [i12]Yanbo Xu, Alind Khare, Glenn Matlin, Monish Ramadoss, Rishikesan Kamaleswaran, Chao Zhang, Alexey Tumanov:
UnfoldML: Cost-Aware and Uncertainty-Based Dynamic 2D Prediction for Multi-Stage Classification. CoRR abs/2210.15056 (2022) - 2021
- [c23]Ujval Misra, Richard Liaw, Lisa Dunlap, Romil Bhardwaj, Kirthevasan Kandasamy, Joseph E. Gonzalez, Ion Stoica, Alexey Tumanov:
RubberBand: cloud-based hyperparameter tuning. EuroSys 2021: 327-342 - [c22]Manas Sahni, Shreya Varshini, Alind Khare, Alexey Tumanov:
CompOFA - Compound Once-For-All Networks for Faster Multi-Platform Deployment. ICLR 2021 - [i11]Manas Sahni, Shreya Varshini, Alind Khare, Alexey Tumanov:
CompOFA: Compound Once-For-All Networks for Faster Multi-Platform Deployment. CoRR abs/2104.12642 (2021) - 2020
- [j2]Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith, Joseph Gonzalez, Joseph M. Hellerstein, Alexey Tumanov:
Cloudburst: Stateful Functions-as-a-Service. Proc. VLDB Endow. 13(11): 2438-2452 (2020) - [c21]Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica, Joseph Gonzalez, Alexey Tumanov:
InferLine: latency-aware provisioning and scaling for prediction serving pipelines. SoCC 2020: 477-491 - [c20]Shenda Hong, Yanbo Xu, Alind Khare, Satria Priambada, Kevin O. Maher, Alaa Aljiffry, Jimeng Sun, Alexey Tumanov:
HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in Intensive Care Units. KDD 2020: 1614-1624 - [i10]Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph Gonzalez, Ion Stoica, Alexey Tumanov:
HyperSched: Dynamic Resource Reallocation for Model Development on a Deadline. CoRR abs/2001.02338 (2020) - [i9]Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith, Jose M. Faleiro, Joseph E. Gonzalez, Joseph M. Hellerstein, Alexey Tumanov:
Cloudburst: Stateful Functions-as-a-Service. CoRR abs/2001.04592 (2020) - [i8]Shenda Hong, Yanbo Xu, Alind Khare, Satria Priambada, Kevin O. Maher, Alaa Aljiffry, Jimeng Sun, Alexey Tumanov:
HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in Intensive Care Units. CoRR abs/2008.04063 (2020)
2010 – 2019
- 2019
- [c19]Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, Chenggang Wu:
Serverless Computing: One Step Forward, Two Steps Back. CIDR 2019 - [c18]João Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, Randy H. Katz:
Cirrus: a Serverless Framework for End-to-end ML Workflows. SoCC 2019: 13-24 - [c17]Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E. Gonzalez, Ion Stoica, Alexey Tumanov:
HyperSched: Dynamic Resource Reallocation for Model Development on a Deadline. SoCC 2019: 61-73 - [c16]Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra, Alexey Tumanov, Ion Stoica:
Lineage stash: fault tolerance off the critical path. SOSP 2019: 338-352 - [i7]Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan Sohail Durrani, Alexey Tumanov, Joseph Gonzalez, Ion Stoica:
Dynamic Space-Time Scheduling for GPU Inference. CoRR abs/1901.00041 (2019) - [i6]Paras Jain, Xiangxi Mo, Ajay Jain, Alexey Tumanov, Joseph E. Gonzalez, Ion Stoica:
The OoO VLIW JIT Compiler for GPU Inference. CoRR abs/1901.10008 (2019) - 2018
- [c15]Jun Woo Park, Alexey Tumanov, Angela H. Jiang, Michael A. Kozuch, Gregory R. Ganger:
3Sigma: distribution-based cluster scheduling for runtime uncertainty. EuroSys 2018: 2:1-2:17 - [c14]Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, Ion Stoica:
Ray: A Distributed Framework for Emerging AI Applications. OSDI 2018: 561-577 - [c13]Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, Joseph E. Gonzalez:
IDK Cascades: Fast Deep Learning by Learning not to Overthink. UAI 2018: 580-590 - [c12]Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R. Ganger, Phillip B. Gibbons:
Tributary: spot-dancing for elastic services with latency SLOs. USENIX ATC 2018: 1-14 - [i5]Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo, Joseph E. Gonzalez, Ion Stoica, Alexey Tumanov:
InferLine: ML Inference Pipeline Composition Framework. CoRR abs/1812.01776 (2018) - [i4]Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, Chenggang Wu:
Serverless Computing: One Step Forward, Two Steps Back. CoRR abs/1812.03651 (2018) - 2017
- [c11]Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger, Phillip B. Gibbons:
Proteus: agile ML elasticity through tiered reliability in dynamic resource markets. EuroSys 2017: 589-604 - [c10]Robert Nishihara, Philipp Moritz, Stephanie Wang, Alexey Tumanov, William Paul, Johann Schleier-Smith, Richard Liaw, Mehrdad Niknami, Michael I. Jordan, Ion Stoica:
Real-Time Machine Learning: The Missing Pieces. HotOS 2017: 106-110 - [i3]Robert Nishihara, Philipp Moritz, Stephanie Wang, Alexey Tumanov, William Paul, Johann Schleier-Smith, Richard Liaw, Michael I. Jordan, Ion Stoica:
Real-Time Machine Learning: The Missing Pieces. CoRR abs/1703.03924 (2017) - [i2]Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Joseph E. Gonzalez:
IDK Cascades: Fast Deep Learning by Learning not to Overthink. CoRR abs/1706.00885 (2017) - [i1]Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, William Paul, Michael I. Jordan, Ion Stoica:
Ray: A Distributed Framework for Emerging AI Applications. CoRR abs/1712.05889 (2017) - 2016
- [b1]Alexey Tumanov:
Scheduling with Space-Time Soft Constraints In Heterogeneous Cloud Datacenters. Carnegie Mellon University, USA, 2016 - [c9]Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch, Mor Harchol-Balter, Gregory R. Ganger:
TetriSched: global rescheduling with adaptive plan-ahead in dynamic heterogeneous clusters. EuroSys 2016: 35:1-35:16 - [c8]Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Iñigo Goiri, Subru Krishnan, Janardhan Kulkarni, Sriram Rao:
Morpheus: Towards Automated SLOs for Enterprise Clusters. OSDI 2016: 117-134 - 2014
- [j1]Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, Nitin Gupta, Michael A. Kozuch, Gregory R. Ganger:
Agility and Performance in Elastic Distributed Storage. ACM Trans. Storage 10(4): 16:1-16:27 (2014) - [c7]Henggang Cui, Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-Kucharsky, Qirong Ho, Gregory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, Eric P. Xing:
Exploiting iterative-ness for parallel ML computations. SoCC 2014: 5:1-5:14 - [c6]Timothy Zhu, Alexey Tumanov, Michael A. Kozuch, Mor Harchol-Balter, Gregory R. Ganger:
PriorityMeister: Tail Latency QoS for Shared Networked Storage. SoCC 2014: 29:1-29:14 - [c5]Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, Nitin Gupta, Michael A. Kozuch, Gregory R. Ganger:
SpringFS: bridging agility and performance in elastic distributed storage. FAST 2014: 243-255 - 2012
- [c4]Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, Michael A. Kozuch:
Heterogeneity and dynamicity of clouds at scale: Google trace analysis. SoCC 2012: 7 - [c3]Alexey Tumanov, James Cipar, Gregory R. Ganger, Michael A. Kozuch:
alsched: algebraic scheduling of mixed workloads in heterogeneous clouds. SoCC 2012: 25 - 2011
- [c2]Roy Bryant, Alexey Tumanov, Olga Irzak, Adin Scannell, Kaustubh R. Joshi, Matti A. Hiltunen, H. Andrés Lagar-Cavilla, Eyal de Lara:
Kaleidoscope: cloud micro-elasticity via VM state coloring. EuroSys 2011: 273-286
2000 – 2009
- 2007
- [c1]Alexey Tumanov, Robert S. Allison, Wolfgang Stürzlinger:
Variability-Aware Latency Amelioration in Distributed Environments. VR 2007: 123-130
Coauthor Index
aka: Joseph E. Gonzalez
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-11 21:41 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint