default search action
Justin Domke
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2009
- [b1]Justin Domke:
Tractable Learning and Inference in High-Treewidth Graphical Models. University of Maryland, College Park, MD, USA, 2009
Journal Articles
- 2023
- [j4]Javier Burroni, Kenta Takatsu, Justin Domke, Daniel Sheldon:
U-Statistics for Importance-Weighted Variational Inference. Trans. Mach. Learn. Res. 2023 (2023) - 2022
- [j3]Ga Wu, Justin Domke, Scott Sanner:
Arbitrary conditional inference in variational autoencoders via fast prior network training. Mach. Learn. 111(7): 2537-2559 (2022) - 2013
- [j2]Justin Domke:
Learning Graphical Model Parameters with Approximate Marginal Inference. IEEE Trans. Pattern Anal. Mach. Intell. 35(10): 2454-2467 (2013) - 2009
- [j1]Justin Domke, Yiannis Aloimonos:
Image Transformations and Blurring. IEEE Trans. Pattern Anal. Mach. Intell. 31(5): 811-823 (2009)
Conference and Workshop Papers
- 2024
- [c42]Xi Wang, Tomas Geffner, Justin Domke:
Joint control variate for faster black-box variational inference. AISTATS 2024: 1639-1647 - [c41]Yuling Yao, Bruno Régaldo-Saint Blancard, Justin Domke:
Simulation-Based Stacking. AISTATS 2024: 4267-4275 - 2023
- [c40]Tomas Geffner, Justin Domke:
Langevin Diffusion Variational Inference. AISTATS 2023: 576-593 - [c39]Justin Domke, Robert M. Gower, Guillaume Garrigos:
Provable convergence guarantees for black-box variational inference. NeurIPS 2023 - [c38]Yuling Yao, Justin Domke:
Discriminative Calibration: Check Bayesian Computation from Simulations and Flexible Classifier. NeurIPS 2023 - 2022
- [c37]Jinlin Lai, Justin Domke, Daniel Sheldon:
Variational Marginal Particle Filters. AISTATS 2022: 875-895 - [c36]Tomas Geffner, Justin Domke:
Variational Inference with Locally Enhanced Bounds for Hierarchical Models. ICML 2022: 7310-7323 - 2021
- [c35]Tomas Geffner, Justin Domke:
On the difficulty of unbiased alpha divergence minimization. ICML 2021: 3650-3659 - [c34]Tomas Geffner, Justin Domke:
MCMC Variational Inference via Uncorrected Hamiltonian Annealing. NeurIPS 2021: 639-651 - [c33]Abhinav Agrawal, Justin Domke:
Amortized Variational Inference for Simple Hierarchical Models. NeurIPS 2021: 21388-21399 - 2020
- [c32]Tomas Geffner, Justin Domke:
A Rule for Gradient Estimator Selection, with an Application to Variational Inference. AISTATS 2020: 1803-1812 - [c31]Justin Domke:
Provable Smoothness Guarantees for Black-Box Variational Inference. ICML 2020: 2587-2596 - [c30]Abhinav Agrawal, Daniel Sheldon, Justin Domke:
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization. NeurIPS 2020 - [c29]Tomas Geffner, Justin Domke:
Approximation Based Variance Reduction for Reparameterization Gradients. NeurIPS 2020 - 2019
- [c28]Justin Domke:
Provable Gradient Variance Guarantees for Black-Box Variational Inference. NeurIPS 2019: 328-337 - [c27]Justin Domke, Daniel Sheldon:
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation. NeurIPS 2019: 338-347 - [c26]My Phan, Yasin Abbasi-Yadkori, Justin Domke:
Thompson Sampling and Approximate Inference. NeurIPS 2019: 8801-8811 - 2018
- [c25]Rui Li, Kishan KC, Feng Cui, Justin Domke, Anne R. Haake:
Sparse Covariance Modeling in High Dimensions with Gaussian Processes. NeurIPS 2018: 741-750 - [c24]Justin Domke, Daniel Sheldon:
Importance Weighting and Variational Inference. NeurIPS 2018: 4475-4484 - [c23]Tomas Geffner, Justin Domke:
Using Large Ensembles of Control Variates for Variational Inference. NeurIPS 2018: 9982-9992 - 2017
- [c22]Justin Domke:
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI. ICML 2017: 1029-1038 - 2016
- [c21]Adrian Weller, Justin Domke:
Clamping Improves TRW and Mean Field Approximations. AISTATS 2016: 38-46 - 2015
- [c20]Ehsan Abbasnejad, Justin Domke, Scott Sanner:
Loss-Calibrated Monte Carlo Action Selection. AAAI 2015: 3447-3453 - [c19]Justin Domke:
Maximum Likelihood Learning With Arbitrary Treewidth via Fast-Mixing Parameter Sets. NIPS 2015: 874-882 - [c18]Hadi Mohasel Afshar, Justin Domke:
Reflection, Refraction, and Hamiltonian Monte Carlo. NIPS 2015: 3007-3015 - 2014
- [c17]Aaron Defazio, Justin Domke, Tibério S. Caetano:
Finito: A faster, permutable incremental gradient method for big data problems. ICML 2014: 1125-1133 - [c16]Xianghang Liu, Justin Domke:
Projecting Markov Random Field Parameters for Fast Mixing. NIPS 2014: 1377-1385 - 2013
- [c15]Justin Domke:
Structured Learning via Logistic Regression. NIPS 2013: 647-655 - [c14]Justin Domke, Xianghang Liu:
Projecting Ising Model Parameters for Fast Mixing. NIPS 2013: 665-673 - 2012
- [c13]Justin Domke:
Generic Methods for Optimization-Based Modeling. AISTATS 2012: 318-326 - 2011
- [c12]Justin Domke:
Dual Decomposition for Marginal Inference. AAAI 2011: 1037-1042 - [c11]Justin Domke:
Parameter learning with truncated message-passing. CVPR 2011: 2937-2943 - 2010
- [c10]Justin Domke:
Implicit Differentiation by Perturbation. NIPS 2010: 523-531 - 2008
- [c9]Justin Domke, Alap Karapurkar, Yiannis Aloimonos:
Who killed the directed model? CVPR 2008 - [c8]Konstantinos Bitsakos, Justin Domke, Cornelia Fermüller, Yiannis Aloimonos:
Measuring 1st order stretchwith a single filter. ICASSP 2008: 909-912 - [c7]Justin Domke:
Learning Convex Inference of Marginals. UAI 2008: 137-144 - 2007
- [c6]Justin Domke, Yiannis Aloimonos:
Multiple View Image Reconstruction: A Harmonic Approach. CVPR 2007 - [c5]Justin Domke, Yiannis Aloimonos:
Signals on Pencils of Lines. ICCV 2007: 1-7 - 2006
- [c4]Justin Domke, Yiannis Aloimonos:
A Probabilistic Notion of Correspondence and the Epipolar Constraint. 3DPVT 2006: 41-48 - [c3]Justin Domke, Yiannis Aloimonos:
Deformation and Viewpoint Invariant Color Histograms. BMVC 2006: 509-518 - [c2]Justin Domke, Yiannis Aloimonos:
A Probabilistic Framework for Correspondence and Egomotion. WDV 2006: 232-242 - [c1]Justin Domke, Yiannis Aloimonos:
Integration of Visual and Inertial Information for Egomotion: a Stochastic Approach. ICRA 2006: 2053-2059
Informal and Other Publications
- 2024
- [i36]Abhinav Agrawal, Justin Domke:
Understanding and mitigating difficulties in posterior predictive evaluation. CoRR abs/2405.19747 (2024) - [i35]Jinlin Lai, Daniel Sheldon, Justin Domke:
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models. CoRR abs/2410.24079 (2024) - 2023
- [i34]Javier Burroni, Kenta Takatsu, Justin Domke, Daniel Sheldon:
U-Statistics for Importance-Weighted Variational Inference. CoRR abs/2302.13918 (2023) - [i33]Javier Burroni, Justin Domke, Daniel Sheldon:
Sample Average Approximation for Black-Box VI. CoRR abs/2304.06803 (2023) - [i32]Yuling Yao, Justin Domke:
Discriminative calibration. CoRR abs/2305.14593 (2023) - [i31]Justin Domke, Guillaume Garrigos, Robert M. Gower:
Provable convergence guarantees for black-box variational inference. CoRR abs/2306.03638 (2023) - [i30]Yuling Yao, Bruno Régaldo-Saint Blancard, Justin Domke:
Simulation based stacking. CoRR abs/2310.17009 (2023) - 2022
- [i29]Tomas Geffner, Justin Domke:
Variational Inference with Locally Enhanced Bounds for Hierarchical Models. CoRR abs/2203.04432 (2022) - [i28]Tomas Geffner, Justin Domke:
Langevin Diffusion Variational Inference. CoRR abs/2208.07743 (2022) - [i27]Xi Wang, Tomas Geffner, Justin Domke:
A Dual Control Variate for doubly stochastic optimization and black-box variational inference. CoRR abs/2210.07290 (2022) - 2021
- [i26]Justin Domke:
An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over Simulations. CoRR abs/2103.01030 (2021) - [i25]Tomas Geffner, Justin Domke:
Empirical Evaluation of Biased Methods for Alpha Divergence Minimization. CoRR abs/2105.06587 (2021) - [i24]Tomas Geffner, Justin Domke:
MCMC Variational Inference via Uncorrected Hamiltonian Annealing. CoRR abs/2107.04150 (2021) - [i23]Jinlin Lai, Daniel Sheldon, Justin Domke:
Variational Marginal Particle Filters. CoRR abs/2109.15134 (2021) - [i22]Abhinav Agrawal, Justin Domke:
Amortized Variational Inference for Simple Hierarchical Models. CoRR abs/2111.03144 (2021) - 2020
- [i21]Justin Domke:
Moment-Matching Conditions for Exponential Families with Conditioning or Hidden Data. CoRR abs/2001.09771 (2020) - [i20]Abhinav Agrawal, Daniel Sheldon, Justin Domke:
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization. CoRR abs/2006.10343 (2020) - [i19]Tomas Geffner, Justin Domke:
Approximation Based Variance Reduction for Reparameterization Gradients. CoRR abs/2007.14634 (2020) - [i18]Tomas Geffner, Justin Domke:
On the Difficulty of Unbiased Alpha Divergence Minimization. CoRR abs/2010.09541 (2020) - 2019
- [i17]Justin Domke:
Provable Smoothness Guarantees for Black-Box Variational Inference. CoRR abs/1901.08431 (2019) - [i16]Justin Domke:
Provable Gradient Variance Guarantees for Black-Box Variational Inference. CoRR abs/1906.08241 (2019) - [i15]Justin Domke, Daniel Sheldon:
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation. CoRR abs/1906.10115 (2019) - [i14]My Phan, Yasin Abbasi-Yadkori, Justin Domke:
Thompson Sampling and Approximate Inference. CoRR abs/1908.04970 (2019) - [i13]Tomas Geffner, Justin Domke:
A Rule for Gradient Estimator Selection, with an Application to Variational Inference. CoRR abs/1911.01894 (2019) - 2018
- [i12]Ga Wu, Justin Domke, Scott Sanner:
Conditional Inference in Pre-trained Variational Autoencoders via Cross-coding. CoRR abs/1805.07785 (2018) - [i11]Justin Domke, Daniel Sheldon:
Importance Weighting and Variational Inference. CoRR abs/1808.09034 (2018) - [i10]Tomas Geffner, Justin Domke:
Using Large Ensembles of Control Variates for Variational Inference. CoRR abs/1810.12482 (2018) - 2017
- [i9]Justin Domke:
A Divergence Bound for Hybrids of MCMC and Variational Inference and an Application to Langevin Dynamics and SGVI. CoRR abs/1706.06529 (2017) - 2015
- [i8]Justin Domke:
Maximum Likelihood Learning With Arbitrary Treewidth via Fast-Mixing Parameter Sets. CoRR abs/1509.08992 (2015) - [i7]Adrian Weller, Justin Domke:
Clamping Improves TRW and Mean Field Approximations. CoRR abs/1510.00087 (2015) - 2014
- [i6]Justin Domke, Xianghang Liu:
Projecting Ising Model Parameters for Fast Mixing. CoRR abs/1407.0749 (2014) - [i5]Justin Domke:
Structured Learning via Logistic Regression. CoRR abs/1407.0754 (2014) - [i4]Aaron J. Defazio, Tibério S. Caetano, Justin Domke:
Finito: A Faster, Permutable Incremental Gradient Method for Big Data Problems. CoRR abs/1407.2710 (2014) - [i3]Xianghang Liu, Justin Domke:
Projecting Markov Random Field Parameters for Fast Mixing. CoRR abs/1411.1119 (2014) - 2013
- [i2]Justin Domke:
Learning Graphical Model Parameters with Approximate Marginal Inference. CoRR abs/1301.3193 (2013) - 2012
- [i1]Justin Domke:
Learning Convex Inference of Marginals. CoRR abs/1206.3247 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-01 01:10 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint