default search action
Mineichi Kudo
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j64]Kai Tanaka, Mineichi Kudo, Keigo Kimura:
Sensor Data Simulation for Anomaly Detection of the Elderly Living Alone. IEEE Internet Things J. 11(19): 31675-31686 (2024) - [j63]Jiaqi Bao, Mineichi Kudo, Keigo Kimura, Lu Sun:
Redirected transfer learning for robust multi-layer subspace learning. Pattern Anal. Appl. 27(1): 25 (2024) - [j62]Jiaqi Bao, Mineichi Kudo, Keigo Kimura, Lu Sun:
Robust embedding regression for semi-supervised learning. Pattern Recognit. 145: 109894 (2024) - [c133]Kai Tanaka, Mineichi Kudo, Keigo Kimura:
Fall Detection by Ambient Sensors on Years-Long Simulation Data. ABC 2024: 1-8 - [c132]Genji Ohara, Keigo Kimura, Mineichi Kudo:
R-LIME: Rectangular Constraints and Optimization for Local Interpretable Model-agnostic Explanation Methods. ICPR (15) 2024: 80-95 - 2023
- [c131]Luhuan Fei, Lu Sun, Mineichi Kudo, Keigo Kimura:
Structured Sparse Multi-Task Learning with Generalized Group Lasso. ECAI 2023: 692-699 - [c130]Jiachun Jin, Jiankun Wang, Lu Sun, Jie Zheng, Mineichi Kudo:
Grouped Multi-Task Learning with Hidden Tasks Enhancement. ECAI 2023: 1164-1171 - [c129]Weijia Lin, Jiankun Wang, Lu Sun, Mineichi Kudo, Keigo Kimura:
Multi-Label Personalized Classification via Exclusive Sparse Tensor Factorization. ICDM 2023: 398-407 - [c128]Haruhi Mizuguchi, Keigo Kimura, Mineichi Kudo, Lu Sun:
Partial Multi-label Learning with a Few Accurately Labeled Data. PRICAI (2) 2023: 79-90 - [c127]Zhiwei Li, Zijian Yang, Lu Sun, Mineichi Kudo, Keigo Kimura:
Incomplete Multi-view Weak-Label Learning with Noisy Features and Imbalanced Labels. PRICAI (2) 2023: 124-130 - [i4]Kai Tanaka, Mineichi Kudo, Keigo Kimura:
Sensor Data Simulation for Anomaly Detection of the Elderly Living Alone. CoRR abs/2312.16852 (2023) - 2022
- [j61]Mariko Tai, Mineichi Kudo, Akira Tanaka, Hideyuki Imai, Keigo Kimura:
Kernelized Supervised Laplacian Eigenmap for Visualization and Classification of Multi-Label Data. Pattern Recognit. 123: 108399 (2022) - [c126]Kai Tanaka, Mineichi Kudo, Keigo Kimura:
Sensor Data Simulation with Wandering Behavior for the Elderly Living Alone. ICPR 2022: 885-891 - [c125]Shumpei Morishita, Mineichi Kudo, Keigo Kimura, Lu Sun:
Realization of Autoencoders by Kernel Methods. S+SSPR 2022: 1-10 - [c124]Keigo Kimura, Jiaqi Bao, Mineichi Kudo, Lu Sun:
Retargeted Regression Methods for Multi-label Learning. S+SSPR 2022: 203-212 - [c123]Mineichi Kudo, Keigo Kimura, Shumpei Morishita, Lu Sun:
Efficient Leave-One-Out Evaluation of Kernelized Implicit Mappings. S+SSPR 2022: 223-232 - [i3]Zhiwei Li, Lu Sun, Mineichi Kudo, Kego Kimura:
CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels. CoRR abs/2201.01079 (2022) - 2021
- [j60]Kejing Lu, Mineichi Kudo:
AdaLSH: Adaptive LSH for Solving c-Approximate Maximum Inner Product Search Problem. IEICE Trans. Inf. Syst. 104-D(1): 138-145 (2021) - [j59]Kejing Lu, Mineichi Kudo, Chuan Xiao, Yoshiharu Ishikawa:
HVS: Hierarchical Graph Structure Based on Voronoi Diagrams for Solving Approximate Nearest Neighbor Search. Proc. VLDB Endow. 15(2): 246-258 (2021) - [c122]Kejing Lu, Mineichi Kudo:
MLSH: Mixed Hash Function Family for Approximate Nearest Neighbor Search in Multiple Fractional Metrics. DASFAA (2) 2021: 569-584 - [c121]Shuhei Aoki, Mineichi Kudo:
Balancing of Samples in Class Hierarchy. IWAIPR 2021: 219-228 - [c120]Tomoya Horio, Mineichi Kudo:
Feature Selection with Class Hierarchy for Imbalance Problems. IWAIPR 2021: 229-238 - [c119]Yasuyuki Kaneko, Mineichi Kudo:
SVM Based EVM for Open Space Problems. IWAIPR 2021: 239-248 - 2020
- [j58]Kejing Lu, Hongya Wang, Wei Wang, Mineichi Kudo:
VHP: Approximate Nearest Neighbor Search via Virtual Hypersphere Partitioning. Proc. VLDB Endow. 13(9): 1443-1455 (2020) - [c118]Mitsuki Maekawa, Atsuyoshi Nakamura, Mineichi Kudo:
Data-Dependent Conversion to a Compact Integer-Weighted Representation of a Weighted Voting Classifier. ACML 2020: 241-256 - [c117]Kejing Lu, Mineichi Kudo:
R2LSH: A Nearest Neighbor Search Scheme Based on Two-dimensional Projected Spaces. ICDE 2020: 1045-1056
2010 – 2019
- 2019
- [j57]Lu Sun, Mineichi Kudo:
Multi-label classification by polytree-augmented classifier chains with label-dependent features. Pattern Anal. Appl. 22(3): 1029-1049 (2019) - [c116]Mariko Tai, Mineichi Kudo:
A Supervised Laplacian Eigenmap Algorithm for Visualization of Multi-label Data: SLE-ML. CIARP 2019: 525-534 - 2018
- [j56]Ryo Watanabe, Junpei Komiyama, Atsuyoshi Nakamura, Mineichi Kudo:
UCB-SC: A Fast Variant of KL-UCB-SC for Budgeted Multi-Armed Bandit Problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101-A(3): 662-667 (2018) - [j55]Lu Sun, Mineichi Kudo:
Optimization of classifier chains via conditional likelihood maximization. Pattern Recognit. 74: 503-517 (2018) - 2017
- [j54]Jana Backhus, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo, Masanori Sugimoto:
An Online Self-Constructive Normalized Gaussian Network with Localized Forgetting. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(3): 865-876 (2017) - [j53]Koji Tabata, Atsuyoshi Nakamura, Mineichi Kudo:
An Efficient Approximate Algorithm for the 1-Median Problem on a Graph. IEICE Trans. Inf. Syst. 100-D(5): 994-1002 (2017) - [j52]Lu Sun, Mineichi Kudo, Keigo Kimura:
READER: Robust Semi-Supervised Multi-Label Dimension Reduction. IEICE Trans. Inf. Syst. 100-D(10): 2597-2604 (2017) - [j51]Ryo Watanabe, Junpei Komiyama, Atsuyoshi Nakamura, Mineichi Kudo:
KL-UCB-Based Policy for Budgeted Multi-Armed Bandits with Stochastic Action Costs. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(11): 2470-2486 (2017) - [i2]Hiroyuki Hanada, Mineichi Kudo, Atsuyoshi Nakamura:
On Practical Accuracy of Edit Distance Approximation Algorithms. CoRR abs/1701.06134 (2017) - [i1]Keigo Kimura, Lu Sun, Mineichi Kudo:
MLC Toolbox: A MATLAB/OCTAVE Library for Multi-Label Classification. CoRR abs/1704.02592 (2017) - 2016
- [j50]Atsuyoshi Nakamura, Ichigaku Takigawa, Hisashi Tosaka, Mineichi Kudo, Hiroshi Mamitsuka:
Mining approximate patterns with frequent locally optimal occurrences. Discret. Appl. Math. 200: 123-152 (2016) - [j49]Keigo Kimura, Mineichi Kudo, Yuzuru Tanaka:
A column-wise update algorithm for nonnegative matrix factorization in Bregman divergence with an orthogonal constraint. Mach. Learn. 103(2): 285-306 (2016) - [j48]Guoliang Lu, Yiqi Zhou, Xueyong Li, Mineichi Kudo:
Efficient action recognition via local position offset of 3D skeletal body joints. Multim. Tools Appl. 75(6): 3479-3494 (2016) - [j47]Sadamori Koujaku, Ichigaku Takigawa, Mineichi Kudo, Hideyuki Imai:
Dense core model for cohesive subgraph discovery. Soc. Networks 44: 143-152 (2016) - [j46]Hideaki Konno, Mineichi Kudo, Hideyuki Imai, Masanori Sugimoto:
Whisper to normal speech conversion using pitch estimated from spectrum. Speech Commun. 83: 10-20 (2016) - [c115]Lu Sun, Mineichi Kudo, Keigo Kimura:
A Scalable Clustering-Based Local Multi-Label Classification Method. ECAI 2016: 261-268 - [c114]Jana Backhus, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo, Masanori Sugimoto:
Reducing Redundancy with Unit Merging for Self-constructive Normalized Gaussian Networks. ICANN (1) 2016: 444-452 - [c113]Jana Backhus, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo, Masanori Sugimoto:
Online EM for the Normalized Gaussian Network with Weight-Time-Dependent Updates. ICONIP (4) 2016: 538-546 - [c112]Keigo Kimura, Mineichi Kudo, Lu Sun, Sadamori Koujaku:
Fast random k-labELsets for large-scale multi-label classification. ICPR 2016: 438-443 - [c111]Lu Sun, Mineichi Kudo, Keigo Kimura:
Multi-label classification with meta-label-specific features. ICPR 2016: 1612-1617 - [c110]Syota Suzuuchi, Mineichi Kudo:
Location-associated indoor behavior analysis of multiple persons. ICPR 2016: 2079-2084 - [c109]Batzaya Norov-Erdene, Mineichi Kudo, Lu Sun, Keigo Kimura:
Locality in multi-label classification problems. ICPR 2016: 2319-2324 - [c108]Mineichi Kudo, Keigo Kimura, Michal Haindl, Hiroshi Tenmoto:
Simultaneous visualization of samples, features and multi-labels. ICPR 2016: 3603-3608 - [c107]Shunsuke Suzuki, Mineichi Kudo, Atsuyoshi Nakamura:
Sitting posture diagnosis using a pressure sensor mat. ISBA 2016: 1-6 - [c106]Keigo Kimura, Mineichi Kudo, Lu Sun:
Simultaneous Nonlinear Label-Instance Embedding for Multi-label Classification. S+SSPR 2016: 15-25 - 2015
- [j45]Akira Tanaka, Hirofumi Takebayashi, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo:
Ensemble and Multiple Kernel Regressors: Which Is Better? IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98-A(11): 2315-2324 (2015) - [j44]Ryo Watanabe, Atsuyoshi Nakamura, Mineichi Kudo:
An improved upper bound on the expected regret of UCB-type policies for a matching-selection bandit problem. Oper. Res. Lett. 43(6): 558-563 (2015) - [j43]Xavier Lladó, Atsushi Imiya, David Mason, Constantino Carlos Reyes-Aldasoro, Kazuaki Aoki, Mineichi Kudo, Yu-Jin Zhang, Vasileios Argyriou:
Corrigendum to 'Homage to Professor Maria Petrou' [ Pattern Recognition Letters 48 (2014) 2-7]. Pattern Recognit. Lett. 54: 109 (2015) - [j42]Shuai Tao, Mineichi Kudo, Bingnan Pei, Hidetoshi Nonaka, Jun Toyama:
Multiperson Locating and Their Soft Tracking in a Binary Infrared Sensor Network. IEEE Trans. Hum. Mach. Syst. 45(5): 550-561 (2015) - [c105]Michal Haindl, Stanislav Mikes, Mineichi Kudo:
Unsupervised Surface Reflectance Field Multi-segmenter. CAIP (1) 2015: 261-273 - [c104]Koji Tabata, Atsuyoshi Nakamura, Mineichi Kudo:
An Algorithm for Influence Maximization in a Two-Terminal Series Parallel Graph and its Application to a Real Network. Discovery Science 2015: 275-283 - [c103]Keigo Kimura, Mineichi Kudo:
Variable Selection for Efficient Nonnegative Tensor Factorization. ICDM 2015: 805-810 - [c102]Lu Sun, Mineichi Kudo:
Polytree-Augmented Classifier Chains for Multi-Label Classification. IJCAI 2015: 3834-3840 - [c101]Ayako Mikami, Mineichi Kudo, Atsuyoshi Nakamura:
Diversity Measures and Margin Criteria in Multi-class Majority Vote Ensemble. MCS 2015: 27-37 - [c100]Sadamori Koujaku, Mineichi Kudo, Ichigaku Takigawa, Hideyuki Imai:
Community Change Detection in Dynamic Networks in Noisy Environment. WWW (Companion Volume) 2015: 793-798 - 2014
- [j41]Guoliang Lu, Mineichi Kudo:
Learning action patterns in difference images for efficient action recognition. Neurocomputing 123: 328-336 (2014) - [j40]Tomomi Endo, Kazuhiro Omura, Mineichi Kudo:
Analysis of Relationship between RéNyi Entropy and Marginal Bayes error and its Application to Weighted naïVE Bayes Classifiers. Int. J. Pattern Recognit. Artif. Intell. 28(7) (2014) - [j39]Koji Ouchi, Atsuyoshi Nakamura, Mineichi Kudo:
An efficient construction and application usefulness of rectangle greedy covers. Pattern Recognit. 47(3): 1459-1468 (2014) - [j38]Hiroyuki Hanada, Mineichi Kudo, Atsuyoshi Nakamura:
Average-case linear-time similar substring searching by the q-gram distance. Theor. Comput. Sci. 530: 23-41 (2014) - [c99]Anton Milan, Stefan Roth, Konrad Schindler, Mineichi Kudo:
Privacy Preserving Multi-target Tracking. ACCV Workshops (3) 2014: 519-530 - [c98]Keigo Kimura, Yuzuru Tanaka, Mineichi Kudo:
A Fast Hierarchical Alternating Least Squares Algorithm for Orthogonal Nonnegative Matrix Factorization. ACML 2014 - [c97]Akira Tanaka, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo:
Theoretical Analyses on Ensemble and Multiple Kernel Regressors. ACML 2014 - [c96]Kenshiro Nishikawa, Mineichi Kudo:
Group Sleepiness Measurement in Classroom. AMMDS 2014: 64-72 - [c95]Hideaki Konno, Rinako Sato, Hideyuki Imai, Mineichi Kudo:
Deterioration of intelligibility in whispered Japanese speech. APSIPA 2014: 1-4 - [c94]Hiroshi Tsukioka, Mineichi Kudo:
Selection of Features in Accord with Population Drift. ICPR 2014: 1591-1596 - [c93]Akira Tanaka, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo:
Analyses on Generalization Error of Ensemble Kernel Regressors. S+SSPR 2014: 273-281 - 2013
- [j37]Atsuyoshi Nakamura, Tomoya Saito, Ichigaku Takigawa, Mineichi Kudo, Hiroshi Mamitsuka:
Fast algorithms for finding a minimum repetition representation of strings and trees. Discret. Appl. Math. 161(10-11): 1556-1575 (2013) - [j36]Guoliang Lu, Mineichi Kudo:
Self-Similarities in Difference Images: A New Cue for Single-Person Oriented Action Recognition. IEICE Trans. Inf. Syst. 96-D(5): 1238-1242 (2013) - [j35]Guoliang Lu, Mineichi Kudo, Jun Toyama:
Temporal segmentation and assignment of successive actions in a long-term video. Pattern Recognit. Lett. 34(15): 1936-1944 (2013) - [c92]Yingmei Piao, Mineichi Kudo:
How Do Facial Expressions Contribute to Age Prediction? ACPR 2013: 882-886 - [c91]Hideaki Konno, Hideo Kanemitsu, Nobuyuki Takahashi, Mineichi Kudo:
Acoustic characteristics related to the perceptual pitch in whispered vowels. ASRU 2013: 245-249 - [c90]Tomomi Endo, Mineichi Kudo:
Weighted Naïve Bayes Classifiers by Renyi Entropy. CIARP (1) 2013: 149-156 - 2012
- [j34]Guoliang Lu, Mineichi Kudo, Jun Toyama:
Selection of Characteristic Frames in Video for Efficient Action Recognition. IEICE Trans. Inf. Syst. 95-D(10): 2514-2521 (2012) - [j33]Shen Pan, Mineichi Kudo:
Recognition of Wood Porosity Based on Direction Insensitive Feature Sets. Trans. Mach. Learn. Data Min. 5(1): 45-62 (2012) - [j32]Shuai Tao, Mineichi Kudo, Hidetoshi Nonaka:
Privacy-Preserved Behavior Analysis and Fall Detection by an Infrared Ceiling Sensor Network. Sensors 12(12): 16920-16936 (2012) - [c89]Koji Tabata, Atsuyoshi Nakamura, Mineichi Kudo:
Fast Approximation Algorithm for the 1-Median Problem. Discovery Science 2012: 169-183 - [c88]Shuai Tao, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Camera view usage of binary infrared sensors for activity recognition. ICPR 2012: 1759-1762 - [c87]Guoliang Lu, Mineichi Kudo, Jun Toyama:
Action recognition via sparse representation of characteristic frames. ICPR 2012: 3268-3271 - [c86]Atsuyoshi Nakamura, Hisashi Tosaka, Mineichi Kudo:
Frequent Approximate Substring Pattern Mining Using Locally Optimal Occurrence Counting. IIAI-AAI 2012: 54-59 - [c85]Hironobu Yasuda, Mineichi Kudo:
Speech rate change detection in martingale framework. ISDA 2012: 859-864 - [c84]Kazuhiro Omura, Mineichi Kudo, Tomomi Endo, Tetsuya Murai:
Weighted naïve Bayes classifier on categorical features. ISDA 2012: 865-870 - [c83]Akira Tanaka, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo:
Extended Analyses for an Optimal Kernel in a Class of Kernels with an Invariant Metric. SSPR/SPR 2012: 345-353 - [e2]Georgy L. Gimel'farb, Edwin R. Hancock, Atsushi Imiya, Arjan Kuijper, Mineichi Kudo, Shinichiro Omachi, Terry Windeatt, Keiji Yamada:
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, SSPR&SPR 2012, Hiroshima, Japan, November 7-9, 2012. Proceedings. Lecture Notes in Computer Science 7626, Springer 2012, ISBN 978-3-642-34165-6 [contents] - 2011
- [j31]Tetsuji Takahashi, Mineichi Kudo, Atsuyoshi Nakamura:
Construction of convex hull classifiers in high dimensions. Pattern Recognit. Lett. 32(16): 2224-2230 (2011) - [c82]Shuai Tao, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Person Authentication and Activities Analysis in an Office Environment Using a Sensor Network. AmI Workshops 2011: 119-127 - [c81]Shuai Tao, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Person Localization and Soft Authentication Using an Infrared Ceiling Sensor Network. CAIP (2) 2011: 122-129 - [c80]Guoliang Lu, Mineichi Kudo, Jun Toyama:
Hierarchical Foreground Detection in Dynamic Background. CAIP (2) 2011: 413-420 - [c79]Hiroyuki Hanada, Atsuyoshi Nakamura, Mineichi Kudo:
A practical comparison of edit distance approximation algorithms. GrC 2011: 231-236 - [c78]Guoliang Lu, Mineichi Kudo, Jun Toyama:
Robust human pose estimation from corrupted images with partial occlusions and noise pollutions. GrC 2011: 433-438 - [c77]Hisataka Nakane, Jun Toyama, Mineichi Kudo:
Fatigue detection using a pressure sensor chair. GrC 2011: 490-495 - [c76]Kazuhiro Omura, Kazuaki Aoki, Mineichi Kudo:
Attribute value reduction for gaining simpler rules. GrC 2011: 527-532 - [c75]Koji Ouchi, Atsuyoshi Nakamura, Mineichi Kudo:
Efficient construction and usefulness of hyper-rectangle greedy covers. GrC 2011: 533-538 - [c74]Shuai Tao, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Recording the Activities of Daily Living based on person localization using an infrared ceiling sensor network. GrC 2011: 647-652 - [c73]Akira Tanaka, Hideyuki Imai, Mineichi Kudo, Masaaki Miyakoshi:
Theoretical analyses on a class of nested RKHS's. ICASSP 2011: 2072-2075 - [c72]Shen Pan, Mineichi Kudo:
Recognition of Porosity in Wood Microscopic Anatomical Images. ICDM 2011: 147-160 - [c71]Atsuyoshi Nakamura, Mineichi Kudo:
Packing Alignment: Alignment for Sequences of Various Length Events. PAKDD (2) 2011: 234-245 - [c70]Hidetoshi Nonaka, Shuai Tao, Jun Toyama, Mineichi Kudo:
Ceiling Sensor Network for Soft Authentication and Person Tracking using Equilibrium Line. PECCS 2011: 218-223 - [e1]Tzung-Pei Hong, Yasuo Kudo, Mineichi Kudo, Tsau Young Lin, Been-Chian Chien, Shyue-Liang Wang, Masahiro Inuiguchi, Guilong Liu:
2011 IEEE International Conference on Granular Computing, GrC-2011, Kaohsiung, Taiwan, November 8-10, 2011. IEEE Computer Society 2011, ISBN 978-1-4577-0372-0 [contents] - 2010
- [j30]Jun Toyama, Mineichi Kudo, Hideyuki Imai:
Probably correct k-nearest neighbor search in high dimensions. Pattern Recognit. 43(4): 1361-1372 (2010) - [j29]Kenji Tabata, Maiko Sato, Mineichi Kudo:
Data compression by volume prototypes for streaming data. Pattern Recognit. 43(9): 3162-3176 (2010) - [c69]Taishi Uchiya, Atsuyoshi Nakamura, Mineichi Kudo:
Algorithms for Adversarial Bandit Problems with Multiple Plays. ALT 2010: 375-389 - [c68]Akira Tanaka, Hideyuki Imai, Mineichi Kudo, Masaaki Miyakoshi:
A Relationship Between Generalization Error and Training Samples in Kernel Regressors. ICPR 2010: 1421-1424 - [c67]Tetsuji Takahashi, Mineichi Kudo:
Margin Preserved Approximate Convex Hulls for Classification. ICPR 2010: 4052-4055 - [c66]Kazuaki Aoki, Mineichi Kudo:
A top-down construction of class decision trees with selected features and classifiers. HPCS 2010: 390-398 - [c65]Atsuyoshi Nakamura, Tomoya Saito, Ichigaku Takigawa, Hiroshi Mamitsuka, Mineichi Kudo:
Algorithms for Finding a Minimum Repetition Representation of a String. SPIRE 2010: 185-190 - [c64]Kazuki Tsuji, Mineichi Kudo, Akira Tanaka:
Localized Projection Learning. SSPR/SPR 2010: 90-99
2000 – 2009
- 2009
- [j28]Ichigaku Takigawa, Mineichi Kudo, Atsuyoshi Nakamura:
Convex sets as prototypes for classifying patterns. Eng. Appl. Artif. Intell. 22(1): 101-108 (2009) - [j27]Taisuke Hosokawa, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Soft authentication using an infrared ceiling sensor network. Pattern Anal. Appl. 12(3): 237-249 (2009) - [j26]Masafumi Yamada, Kazuhiro Kamiya, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Soft authentication and behavior analysis using a chair with sensors attached: hipprint authentication. Pattern Anal. Appl. 12(3): 251-260 (2009) - [c63]Tetsuji Takahashi, Mineichi Kudo, Atsuyoshi Nakamura:
Classifier Selection in a Family of Polyhedron Classifiers. CIARP 2009: 441-448 - [c62]Mineichi Kudo, Jun Toyama, Hideyuki Imai:
A Fast Nearest Neighbor Method Using Empirical Marginal Distribution. KES (2) 2009: 333-339 - [c61]Satoshi Shirai, Mineichi Kudo, Atsuyoshi Nakamura:
Comparison of Bagging and Boosting Algorithms on Sample and Feature Weighting. MCS 2009: 22-31 - [c60]Maiko Sato, Mineichi Kudo, Jun Toyama:
Clustering and Density Estimation for Streaming Data using Volume Prototypes. PRIS 2009: 39-48 - 2008
- [j25]Yohji Shidara, Mineichi Kudo, Atsuyoshi Nakamura:
Classification Based on Consistent Itemset Rules. Trans. Mach. Learn. Data Min. 1(1): 17-30 (2008) - [j24]Mineichi Kudo, Tetsuya Murai:
Extended DNF Expression and Variable Granularity in Information Tables. IEEE Trans. Fuzzy Syst. 16(2): 285-298 (2008) - [c59]Atsuyoshi Nakamura, Mineichi Kudo:
What Sperner Family Concept Class is Easy to Be Enumerated? ICDM 2008: 482-491 - [c58]Kazuhiro Kamiya, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Sitting posture analysis by pressure sensors. ICPR 2008: 1-4 - [c57]Mineichi Kudo, Atsuyoshi Nakamura, Ichigaku Takigawa:
Classification by reflective convex hulls. ICPR 2008: 1-4 - [c56]Yohji Shidara, Mineichi Kudo, Atsuyoshi Nakamura:
Classification by bagged consistent itemset rules. ICPR 2008: 1-4 - [c55]Akira Tanaka, Hideyuki Imai, Mineichi Kudo, Masaaki Miyakoshi:
Optimal Kernel in a Class of Kernels with an Invariant Metric. SSPR/SPR 2008: 530-539 - [c54]Kazuaki Aoki, Mineichi Kudo:
Feature and Classifier Selection in Class Decision Trees. SSPR/SPR 2008: 562-571 - [c53]Hiroshi Tenmoto, Mineichi Kudo:
Soft Feature Selection by Using a Histogram-Based Classifier. SSPR/SPR 2008: 572-581 - [c52]Satoshi Shirai, Mineichi Kudo, Atsuyoshi Nakamura:
Bagging, Random Subspace Method and Biding. SSPR/SPR 2008: 801-810 - [c51]Maiko Sato, Mineichi Kudo, Jun Toyama:
Behavior Analysis of Volume Prototypes in High Dimensionality. SSPR/SPR 2008: 874-884 - 2007
- [j23]Akira Tanaka, Hideyuki Imai, Mineichi Kudo, Masaaki Miyakoshi:
Integrated kernels and their properties. Pattern Recognit. 40(11): 2930-2938 (2007) - [c50]Hisashi Tosaka, Atsuyoshi Nakamura, Mineichi Kudo:
Mining Subtrees with Frequent Occurrence of Similar Subtrees. Discovery Science 2007: 286-290 - [c49]Mineichi Kudo, Satoshi Shirai, Hiroshi Tenmoto:
A Combination of Sample Subsets and Feature Subsets in One-Against-Other Classifiers. MCS 2007: 241-250 - [c48]Yohji Shidara, Atsuyoshi Nakamura, Mineichi Kudo:
CCIC: Consistent Common Itemsets Classifier. MLDM 2007: 490-498 - [c47]Yuji Muto, Mineichi Kudo, Yohji Shidara:
Reduction of Categorical and Numerical Attribute Values for Understandability of Data and Rules. RSKT 2007: 211-218 - 2006
- [j22]Yuji Muto, Mineichi Kudo, Tetsuya Murai:
Reduction of Attribute Values for Kansei Representation. J. Adv. Comput. Intell. Intell. Informatics 10(5): 666-672 (2006) - [j21]Naoto Abe, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Classifier-independent feature selection on the basis of divergence criterion. Pattern Anal. Appl. 9(2-3): 127-137 (2006) - [j20]Naoto Abe, Mineichi Kudo:
Non-parametric classifier-independent feature selection. Pattern Recognit. 39(5): 737-746 (2006) - [c46]Masafumi Yamada, Mineichi Kudo, Hidetoshi Nonaka, Jun Toyama:
Hipprint Person Identification and Behavior Analys. ICPR (4) 2006: 533-536 - [c45]Akira Tanaka, Masashi Sugiyama, Hideyuki Imai, Mineichi Kudo, Masaaki Miyakoshi:
Model Selection Using a Class of Kernels with an Invariant Metric. SSPR/SPR 2006: 862-870 - 2005
- [j19]Kazuaki Aoki, Toshiharu Watanabe, Mineichi Kudo:
Design of decision trees using class-dependent feature subsets. Syst. Comput. Jpn. 36(4): 37-47 (2005) - [c44]Mineichi Kudo, Atsuyoshi Nakamura:
Specific-Purpose Web Searches on the Basis of Structure and Contents. Federation over the Web 2005: 79-96 - [c43]Hidehiko Ino, Mineichi Kudo, Atsuyoshi Nakamura:
A Comparative Study of Algorithms for Finding Web Communities. ICDE Workshops 2005: 1257 - [c42]Hiroyuki Hasegawa, Mineichi Kudo, Atsuyoshi Nakamura:
Empirical Study on Usefulness of Algorithm SACwRApper for Reputation Extraction from the WWW. KES (4) 2005: 668-674 - [c41]Taisuke Hosokawa, Mineichi Kudo:
Person Tracking with Infrared Sensors. KES (4) 2005: 682-688 - [c40]Naoto Abe, Mineichi Kudo:
Entropy Criterion for Classifier-Independent Feature Selection. KES (4) 2005: 689-695 - [c39]Hiroshi Tenmoto, Mineichi Kudo:
Finding and Auto-labeling of Task Groups on E-Mails and Documents. KES (4) 2005: 696-702 - [c38]Masafumi Yamada, Jun Toyama, Mineichi Kudo:
Person Recognition by Pressure Sensors. KES (4) 2005: 703-708 - [c37]Ichigaku Takigawa, Mineichi Kudo, Atsuyoshi Nakamura:
The Convex Subclass Method: Combinatorial Classifier Based on a Family of Convex Sets. MLDM 2005: 90-99 - [c36]Atsuyoshi Nakamura, Mineichi Kudo:
Mining Frequent Trees with Node-Inclusion Constraints. PAKDD 2005: 850-860 - [c35]Mineichi Kudo, Tetsuya Murai:
A New Treatment and Viewpoint of Information Tables. RSFDGrC (1) 2005: 234-243 - [c34]Yuji Muto, Mineichi Kudo:
Discernibility-Based Variable Granularity and Kansei Representations. RSFDGrC (1) 2005: 692-700 - [c33]Hiroshi Tenmoto, Mineichi Kudo:
Density- and Complexity-Regularization in Gaussian Mixture Bayesian Classifier. WSTST 2005: 391-399 - [c32]Hidehiko Ino, Mineichi Kudo, Atsuyoshi Nakamura:
Partitioning of Web graphs by community topology. WWW 2005: 661-669 - [p1]Yohji Shidara, Mineichi Kudo, Atsuyoshi Nakamura:
Extraction of Generalized Rules with Automated Attribute Abstraction. Foundations of Data Mining and knowledge Discovery 2005: 161-170 - 2004
- [j18]Ichigaku Takigawa, Mineichi Kudo, Jun Toyama:
Performance analysis of minimum ℓ1-norm solutions for underdetermined source separation. IEEE Trans. Signal Process. 52(3): 582-591 (2004) - [c31]Tetsuya Murai, Yasuo Kudo, Van-Nam Huynh, Akira Tanaka, Mineichi Kudo:
A note on fuzzy granular reasoning. FUZZ-IEEE 2004: 263-268 - [c30]Ichigaku Takigawa, Mineichi Kudo, Atsuyoshi Nakamura, Jun Toyama:
On the Minimum l1-Norm Signal Recovery in Underdetermined Source Separation. ICA 2004: 193-200 - [c29]Michal Haindl, Jirí Grim, Petr Somol, Pavel Pudil, Mineichi Kudo:
A Gaussian Mixture-Based Colour Texture Model. ICPR (3) 2004: 177-180 - [c28]Akira Tanaka, Ichigaku Takigawa, Hideyuki Imai, Mineichi Kudo, Masaaki Miyakoshi:
Projection Learning Based Kernel Machine Design Using Series of Monotone Increasing Reproducing Kernel Hilbert Spaces. KES 2004: 1058-1064 - [c27]Masafumi Yamada, Mineichi Kudo:
Combination of Weak Evidences by D-S Theory for Person Recognition. KES 2004: 1065-1071 - [c26]Tetsuya Murai, Masayuki Sanada, Yasuo Kudo, Mineichi Kudo:
A Note on Ziarko's Variable Precision Rough Set Model and Nonmonotonic Reasoning. Rough Sets and Current Trends in Computing 2004: 103-108 - [c25]Mineichi Kudo, Hideyuki Imai, Akira Tanaka, Tetsuya Murai:
A Nearest Neighbor Method Using Bisectors. SSPR/SPR 2004: 885-893 - [c24]Hiroshi Tenmoto, Yasukuni Mori, Mineichi Kudo:
Classifier-Independent Visualization of Supervised Data Structures Using a Graph. SSPR/SPR 2004: 1043-1051 - 2003
- [j17]Mineichi Kudo, Naoto Masuyama, Jun Toyama, Masaru Shimbo:
Simple termination conditions for k-nearest neighbor method. Pattern Recognit. Lett. 24(9-10): 1203-1213 (2003) - [c23]Atsuyoshi Nakamura, Mineichi Kudo, Akira Tanaka, Kazuhiko Tanabe:
Collaborative Filtering Using Projective Restoration Operators. Discovery Science 2003: 393-401 - [c22]Atsuyoshi Nakamura, Mineichi Kudo, Akira Tanaka:
Collaborative Filtering Using Restoration Operators. PKDD 2003: 339-349 - 2002
- [c21]Naoto Abe, Mineichi Kudo, Masaru Shimbo:
Classifier-Independent Feature Selection Based on Non-parametric Discriminant Analysis. SSPR/SPR 2002: 470-479 - [c20]Kazuaki Aoki, Mineichi Kudo:
Decision Tree Using Class-Dependent Feature Subsets. SSPR/SPR 2002: 761-769 - 2001
- [j16]Hiroki Hayashi, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Fast Labelling of Natural Scenes Using Enhanced Knowledge. Pattern Anal. Appl. 4(1): 20-27 (2001) - [j15]Yoshinori Yanagihara, Masanori Kawakami, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
A two-channel coding of images using spline surfaces. Syst. Comput. Jpn. 32(6): 13-20 (2001) - 2000
- [j14]Mineichi Kudo, Jack Sklansky:
Comparison of algorithms that select features for pattern classifiers. Pattern Recognit. 33(1): 25-41 (2000) - [c19]Mineichi Kudo, Hideyuki Imai, Masaru Shimbo:
A Histogram-Based Classifier on Overlapped Bins. ICPR 2000: 2029-2033 - [c18]Hiroshi Tenmoto, Mineichi Kudo, Masaru Shimbo:
Selection of the Number of Components Using a Genetic Algorithm for Mixture Model Classifiers. SSPR/SPR 2000: 511-520 - [c17]Naoto Abe, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
A Divergence Criterion for Classifier-Independent Feature Selection. SSPR/SPR 2000: 668-676 - [c16]Mineichi Kudo, Petr Somol, Pavel Pudil, Masaru Shimbo, Jack Sklansky:
Comparison of Classifier-Specific Feature Selection Algorithms. SSPR/SPR 2000: 677-686
1990 – 1999
- 1999
- [j13]Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Multidimensional curve classification using passing-through regions. Pattern Recognit. Lett. 20(11-13): 1103-1111 (1999) - [c15]Hiroshi Tenmoto, Mineichi Kudo, Masaru Shimbo:
Determination of the number of components based on class separability in mixture-based classifiers. KES 1999: 439-442 - [c14]Naoto Masuyama, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Termination conditions for a fast k-nearest neighbor method. KES 1999: 443-446 - [c13]Hiroki Hayashi, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Estimation of velocity vectors from a video stream using discontinuity of optical flow. KES 1999: 447-450 - [c12]Masanori Kawakami, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Effective sampling points for two-channel spline image coding. KES 1999: 451-454 - [c11]Tomohiko Gotoh, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Geometry reconstruction of urban scenes by tracking vertical edges. KES 1999: 455-458 - [c10]J. Konishi, S. Shimba, Jun Toyama, Mineichi Kudo, Masaru Shimbo:
Tabu search for solving optimization problems on Hopfield neural networks. KES 1999: 518-521 - 1998
- [j12]Mineichi Kudo, Jack Sklansky:
A comparative evaluation of medium- and large-scale feature selectors for pattern classifiers. Kybernetika 34(4): 429-434 (1998) - [j11]Manabu Sato, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Construction of nonlinear discrimination function based on the MDL criterion. Kybernetika 34(4): 467-472 (1998) - [j10]Hiroshi Tenmoto, Mineichi Kudo, Masaru Shimbo:
Piecewise linear classifiers preserving high local recognition rates. Kybernetika 34(4): 479-484 (1998) - [j9]Hiroshi Tenmoto, Mineichi Kudo, Masaru Shimbo:
Piecewise linear classifiers with an appropriate number of hyperplanes. Pattern Recognit. 31(11): 1627-1634 (1998) - [j8]Mineichi Kudo, Yoichiro Torii, Yasukuni Mori, Masaru Shimbo:
Approximation of class regions by quasi convex hulls. Pattern Recognit. Lett. 19(9): 777-786 (1998) - [c9]Mineichi Kudo, Hiroshi Tenmoto, Satoru Sumiyoshi, Masaru Shimbo:
A subclass-based mixture model for pattern recognition. ICPR 1998: 870-872 - [c8]Yasukuni Mori, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Visualization of the structure of classes using a graph. ICPR 1998: 1724-1727 - [c7]Mineichi Kudo, F. Taniguchi, Hiroshi Tenmoto, Masaru Shimbo:
Appropriate initial component densities of mixture modeling for pattern recognition. KES (2) 1998: 216-220 - [c6]Shinichi Yanagi, Mineichi Kudo, Masaru Shimbo:
Polynomial-sample learnability about distance-0 and 1 DNF formulas. KES (2) 1998: 230-235 - [c5]Mineichi Kudo, Jack Sklansky:
Classifier-Independent Feature Selection For Two-Stage Feature Selection. SSPR/SPR 1998: 548-554 - [c4]Maiko Sato, Mineichi Kudo, Jun Toyama, Masaru Shimbo:
Feature Selection For a Nonlinear Classifier. SSPR/SPR 1998: 555-563 - [c3]Hiroshi Tenmoto, Mineichi Kudo, Masaru Shimbo:
MDL-Based Selection of the Number of Components in Mixture Models for Pattern Classification. SSPR/SPR 1998: 831-836 - 1997
- [c2]F. Taniguchi, Mineichi Kudo, Masaru Shimbo:
Estimation of class regions in feature space using rough set theory. KES (2) 1997: 373-377 - 1996
- [j7]Mineichi Kudo, Shinichi Yanagi, Masaru Shimbo:
Construction of class regions by a randomized algorithm: a randomized subclass method. Pattern Recognit. 29(4): 581-588 (1996) - [j6]Mineichi Kudo, Koji Mizukami, Yuji Nakamura, Masaru Shimbo:
Realization of membership quiries in character recognition. Pattern Recognit. Lett. 17(1): 77-82 (1996) - [c1]Mineichi Kudo, Masaru Shimbo:
Selection of classifiers based on the MDL principle using the VC dimension. ICPR 1996: 886-890 - 1993
- [j5]Mineichi Kudo, Masaru Shimbo:
Feature selection based on the structural indices of categories. Pattern Recognit. 26(6): 891-901 (1993) - 1992
- [j4]Mineichi Kudo, S. Kitamura-Abe, Masaru Shimbo, Y. Lida:
Analysis of context of 5'-splice site sequences in mammalian mRNA precursors by subclass method. Comput. Appl. Biosci. 8(4): 367-376 (1992)
1980 – 1989
- 1989
- [j3]Mineichi Kudo, Masaru Shimbo:
Optimal subclasses with dichotomous variables for feature selection and discrimination. IEEE Trans. Syst. Man Cybern. 19(5): 1194-1198 (1989) - 1988
- [j2]Mineichi Kudo, Masaru Shimbo:
Efficient regular grammatical inference techniques by the use of partial similarities and their logical relationships. Pattern Recognit. 21(4): 401-409 (1988) - 1987
- [j1]Mineichi Kudo, Y. Iida, Masaru Shimbo:
Syntactic pattern analysis of 5'-splice site sequences of mRNA precursors in higher eukaryote genes. Comput. Appl. Biosci. 3(4): 319-324 (1987)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-23 20:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint