default search action
Alberto Fernández 0001
Person information
- affiliation: University of Granada, Department of Computer Science and Artificial Intelligence, Spain
- affiliation (former): University of Jaén, Department of Computer Science, Spain
Other persons with the same name
- Alberto Fernández (aka: Alberto Fernandez) — disambiguation page
- Alberto Fernández 0002 (aka: Alberto Fernández Gil) — University Rey Juan Carlos, Mostoles, Spain
- Alberto Fernández 0003 — Rovira i Virgili University, Tarragona, Spain
- Alberto Fernández 0004 — Complutense University of Madrid, Psychiatry Department, Spain
- Alberto Fernández 0005 (aka: Alberto Fernández González) — University College London, Bartlett School of Architecture, London, UK
- Alberto Fernández Villán (aka: Alberto Fernández 0006) — Grupo TSK, Gijón, Asturias, Spain (and 1 more)
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c43]J. Lopez-Martinez, Purificación Checa, José Manuel Soto-Hidalgo, Isaac Triguero, Alberto Fernández:
A Wearable Eye-Tracking Approach for Early Autism Detection with Machine Learning: Unravelling Challenges and Opportunities. IJCNN 2024: 1-8 - [i3]José Daniel Pascual-Triana, Alberto Fernández, Javier Del Ser, Francisco Herrera:
Overlap Number of Balls Model-Agnostic CounterFactuals (ONB-MACF): A Data-Morphology-based Counterfactual Generation Method for Trustworthy Artificial Intelligence. CoRR abs/2405.12326 (2024) - [i2]José Daniel Pascual-Triana, Alberto Fernández, Paulo Novais, Francisco Herrera:
Fair Overlap Number of Balls (Fair-ONB): A Data-Morphology-based Undersampling Method for Bias Reduction. CoRR abs/2407.14210 (2024) - 2023
- [j62]Miriam Seoane Santos, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, João A. M. Santos:
A unifying view of class overlap and imbalance: Key concepts, multi-view panorama, and open avenues for research. Inf. Fusion 89: 228-253 (2023) - [j61]Fatemeh Aghaeipoor, Mohammad Sabokrou, Alberto Fernández:
Fuzzy Rule-Based Explainer Systems for Deep Neural Networks: From Local Explainability to Global Understanding. IEEE Trans. Fuzzy Syst. 31(9): 3069-3080 (2023) - 2022
- [j60]Miriam Seoane Santos, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, Carlos Soares, Szymon Wilk, João A. M. Santos:
On the joint-effect of class imbalance and overlap: a critical review. Artif. Intell. Rev. 55(8): 6207-6275 (2022) - [j59]Miriam Seoane Santos, Pedro Henriques Abreu, Alberto Fernández, Julián Luengo, João A. M. Santos:
The impact of heterogeneous distance functions on missing data imputation and classification performance. Eng. Appl. Artif. Intell. 111: 104791 (2022) - [j58]Xiangrui Chao, Gang Kou, Yi Peng, Alberto Fernández:
An efficiency curve for evaluating imbalanced classifiers considering intrinsic data characteristics: Experimental analysis. Inf. Sci. 608: 1131-1156 (2022) - [j57]Sebastián Maldonado, Carla Vairetti, Alberto Fernández, Francisco Herrera:
FW-SMOTE: A feature-weighted oversampling approach for imbalanced classification. Pattern Recognit. 124: 108511 (2022) - [j56]Fatemeh Aghaeipoor, Mohammad Masoud Javidi, Alberto Fernández:
IFC-BD: An Interpretable Fuzzy Classifier for Boosting Explainable Artificial Intelligence in Big Data. IEEE Trans. Fuzzy Syst. 30(3): 830-840 (2022) - 2021
- [j55]J. A. Fdez-Sánchez, José Daniel Pascual-Triana, Alberto Fernández, Francisco Herrera:
Learning interpretable multi-class models by means of hierarchical decomposition: Threshold Control for Nested Dichotomies. Neurocomputing 463: 514-524 (2021) - [j54]José Daniel Pascual-Triana, David Charte, Marta Andrés Arroyo, Alberto Fernández, Francisco Herrera:
Revisiting data complexity metrics based on morphology for overlap and imbalance: snapshot, new overlap number of balls metrics and singular problems prospect. Knowl. Inf. Syst. 63(7): 1961-1989 (2021) - [j53]Néstor Rodríguez, David López, Alberto Fernández, Salvador García, Francisco Herrera:
SOUL: Scala Oversampling and Undersampling Library for imbalance classification. SoftwareX 15: 100767 (2021) - [e1]Pedro Henriques Abreu, Pedro Pereira Rodrigues, Alberto Fernández, João Gama:
Advances in Intelligent Data Analysis XIX - 19th International Symposium on Intelligent Data Analysis, IDA 2021, Porto, Portugal, April 26-28, 2021, Proceedings. Lecture Notes in Computer Science 12695, Springer 2021, ISBN 978-3-030-74250-8 [contents] - 2020
- [j52]Alberto Fernández:
Discussion on Vuttipittayamongkol, P. and Elyan, E., Improved Overlap-Based Undersampling for Imbalanced Dataset Classification with Application to Epilepsy and Parkinson's Disease. Int. J. Neural Syst. 30(9): 2075001:1-2075001:3 (2020) - [c42]Fatemeh Aghaeipoor, Mohammad Masoud Javidi, Isaac Triguero, Alberto Fernández:
Chi-BD-DRF: Design of Scalable Fuzzy Classifiers for Big Data via A Dynamic Rule Filtering Approach. FUZZ-IEEE 2020: 1-7 - [c41]José Ramón Trillo, Alberto Fernández, Francisco Herrera:
HFER: Promoting Explainability in Fuzzy Systems via Hierarchical Fuzzy Exception Rules. FUZZ-IEEE 2020: 1-8 - [c40]Nicolas Potie, Stavros Giannoukakos, Michael Hackenberg, Alberto Fernández:
Applying Feature Selection to Improve Predictive Performance and Explainability in Lung Cancer Detection with Soft Computing. HICSS 2020: 1-10 - [i1]José Daniel Pascual-Triana, David Charte, Marta Andrés Arroyo, Alberto Fernández, Francisco Herrera:
Revisiting Data Complexity Metrics Based on Morphology for Overlap and Imbalance: Snapshot, New Overlap Number of Balls Metrics and Singular Problems Prospect. CoRR abs/2007.07935 (2020)
2010 – 2019
- 2019
- [j51]Alberto Fernández, Francisco Herrera, Oscar Cordón, María José del Jesus, Francesco Marcelloni:
Evolutionary Fuzzy Systems for Explainable Artificial Intelligence: Why, When, What for, and Where to? IEEE Comput. Intell. Mag. 14(1): 69-81 (2019) - [j50]Alberto Fernández, Isaac Triguero, Mikel Galar, Francisco Herrera:
Guest Editorial: Computational Intelligence for Big Data Analytics. Cogn. Comput. 11(3): 329-330 (2019) - [j49]Salma Elhag, Alberto Fernández, Abdulrahman H. Altalhi, Saleh Alshomrani, Francisco Herrera:
A multi-objective evolutionary fuzzy system to obtain a broad and accurate set of solutions in intrusion detection systems. Soft Comput. 23(4): 1321-1336 (2019) - [j48]Javier Cózar, Alberto Fernández, Francisco Herrera, José A. Gámez:
A Metahierarchical Rule Decision System to Design Robust Fuzzy Classifiers Based on Data Complexity. IEEE Trans. Fuzzy Syst. 27(4): 701-715 (2019) - [c39]Nicolas Potie, Stavros Giannoukakos, Michael Hackenberg, Alberto Fernández:
On the Need of Interpretability for Biomedical Applications: Using Fuzzy Models for Lung Cancer Prediction with Liquid Biopsy. FUZZ-IEEE 2019: 1-6 - [c38]María José Basgall, Waldo Hasperué, Marcelo R. Naiouf, Alberto Fernández, Francisco Herrera:
An Analysis of Local and Global Solutions to Address Big Data Imbalanced Classification: A Case Study with SMOTE Preprocessing. JCC&BD 2019: 75-85 - 2018
- [b1]Alberto Fernández, Salvador García, Mikel Galar, Ronaldo C. Prati, Bartosz Krawczyk, Francisco Herrera:
Learning from Imbalanced Data Sets. Springer 2018, ISBN 978-3-319-98073-7, pp. 1-377 - [j47]Deborah Galpert, Alberto Fernández, Francisco Herrera, Agostinho Antunes, Reinaldo Molina Ruiz, Guillermín Agüero-Chapín:
Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers. BMC Bioinform. 19(1): 166:1-166:17 (2018) - [j46]Sergio Ramírez-Gallego, Alberto Fernández, Salvador García, Min Chen, Francisco Herrera:
Big Data: Tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce. Inf. Fusion 42: 51-61 (2018) - [j45]Alberto Fernández, Salvador García, Francisco Herrera, Nitesh V. Chawla:
SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary. J. Artif. Intell. Res. 61: 863-905 (2018) - [j44]María José Basgall, Waldo Hasperué, Marcelo R. Naiouf, Alberto Fernández, Francisco Herrera:
SMOTE-BD: An Exact and Scalable Oversampling Method for Imbalanced Classification in Big Data. J. Comput. Sci. Technol. 18(03): 23 (2018) - [j43]Sarah Vluymans, Alberto Fernández, Yvan Saeys, Chris Cornelis, Francisco Herrera:
Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach. Knowl. Inf. Syst. 56(1): 55-84 (2018) - [j42]Ignacio Cordón, Salvador García, Alberto Fernández, Francisco Herrera:
Imbalance: Oversampling algorithms for imbalanced classification in R. Knowl. Based Syst. 161: 329-341 (2018) - [c37]Luis Íñiguez, Mikel Galar, Alberto Fernández:
Improving Fuzzy Rule Based Classification Systems in Big Data via Support-based Filtering. FUZZ-IEEE 2018: 1-8 - 2017
- [j41]Alberto Fernández, Sara del Río, Abdullah Bawakid, Francisco Herrera:
Fuzzy rule based classification systems for big data with MapReduce: granularity analysis. Adv. Data Anal. Classif. 11(4): 711-730 (2017) - [j40]Alberto Fernández, Abdulrahman H. Altalhi, Saleh Alshomrani, Francisco Herrera:
Why Linguistic Fuzzy Rule Based Classification Systems perform well in Big Data Applications? Int. J. Comput. Intell. Syst. 10(1): 1211-1225 (2017) - [j39]Isaac Triguero, Sergio González, Jose M. Moyano, Salvador García, Jesús Alcalá-Fdez, Julián Luengo, Alberto Fernández, María José del Jesus, Luciano Sánchez, Francisco Herrera:
KEEL 3.0: An Open Source Software for Multi-Stage Analysis in Data Mining. Int. J. Comput. Intell. Syst. 10(1): 1238-1249 (2017) - [j38]Alberto Fernández, Cristóbal J. Carmona, María José del Jesus, Francisco Herrera:
A Pareto-based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets. Int. J. Neural Syst. 27(6): 1750028:1-1750028:21 (2017) - [j37]Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, Francisco Herrera:
NMC: nearest matrix classification - A new combination model for pruning One-vs-One ensembles by transforming the aggregation problem. Inf. Fusion 36: 26-51 (2017) - [c36]Alberto Fernández, Eva Almansa, Francisco Herrera:
Chi-Spark-RS: An Spark-built evolutionary fuzzy rule selection algorithm in imbalanced classification for big data problems. FUZZ-IEEE 2017: 1-6 - [c35]Miguel Ángel Rodríguez, Alberto Fernández, Antonio Peregrín, Francisco Herrera:
A Review of Distributed Data Models for Learning. HAIS 2017: 88-97 - 2016
- [j36]Alberto Fernández, Mikel Elkano, Mikel Galar, José Antonio Sanz, Saleh Alshomrani, Humberto Bustince, Francisco Herrera:
Enhancing evolutionary fuzzy systems for multi-class problems: Distance-based relative competence weighting with truncated confidences (DRCW-TC). Int. J. Approx. Reason. 73: 108-122 (2016) - [j35]Alberto Fernández, Cristóbal J. Carmona, María José del Jesus, Francisco Herrera:
A View on Fuzzy Systems for Big Data: Progress and Opportunities. Int. J. Comput. Intell. Syst. 9(sup1): 69-80 (2016) - [j34]Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, Francisco Herrera:
Ordering-based pruning for improving the performance of ensembles of classifiers in the framework of imbalanced datasets. Inf. Sci. 354: 178-196 (2016) - [c34]Alberto Fernández, Francisco Herrera:
Evolutionary Fuzzy Systems: A Case Study in Imbalanced Classification. Fuzzy Logic and Information Fusion 2016: 169-200 - [c33]Alberto Fernández, Sara del Río, Francisco Herrera:
A First Approach in Evolutionary Fuzzy Systems based on the lateral tuning of the linguistic labels for Big Data classification. FUZZ-IEEE 2016: 1437-1444 - 2015
- [j33]Salma Elhag, Alberto Fernández, Abdullah Bawakid, Saleh Alshomrani, Francisco Herrera:
On the combination of genetic fuzzy systems and pairwise learning for improving detection rates on Intrusion Detection Systems. Expert Syst. Appl. 42(1): 193-202 (2015) - [j32]Saleh Alshomrani, Abdullah Bawakid, Seong-O Shim, Alberto Fernández, Francisco Herrera:
A proposal for evolutionary fuzzy systems using feature weighting: Dealing with overlapping in imbalanced datasets. Knowl. Based Syst. 73: 1-17 (2015) - [j31]Alberto Fernández, Victoria López, María José del Jesus, Francisco Herrera:
Revisiting Evolutionary Fuzzy Systems: Taxonomy, applications, new trends and challenges. Knowl. Based Syst. 80: 109-121 (2015) - [j30]Mikel Galar, Alberto Fernández, Edurne Barrenechea, Francisco Herrera:
DRCW-OVO: Distance-based relative competence weighting combination for One-vs-One strategy in multi-class problems. Pattern Recognit. 48(1): 28-42 (2015) - [j29]Mikel Elkano, Mikel Galar, José Antonio Sanz, Alberto Fernández, Edurne Barrenechea Tartas, Francisco Herrera, Humberto Bustince:
Enhancing Multiclass Classification in FARC-HD Fuzzy Classifier: On the Synergy Between $n$-Dimensional Overlap Functions and Decomposition Strategies. IEEE Trans. Fuzzy Syst. 23(5): 1562-1580 (2015) - [c32]Mikel Galar, Alberto Fernández, Edurne Barrenechea, Humberto Bustince, Francisco Herrera:
New Ordering-Based Pruning Metrics for Ensembles of Classifiers in Imbalanced Datasets. CORES 2015: 3-15 - [c31]Pedro Villar, Alberto Fernández, Francisco Herrera:
On the Combination of Pairwise and Granularity Learning for Improving Fuzzy Rule-Based Classification Systems: GL-FARCHD-OVO. CORES 2015: 135-146 - [c30]Alberto Fernández, Mikel Galar, José Antonio Sanz, Humberto Bustince, Francisco Herrera:
Improving Pairwise Learning Classification in Fuzzy Rule Based Classification Systems Using Dynamic Classifier Selection. IFSA-EUSFLAT 2015 - [c29]Alberto Fernández, Mikel Galar, José Antonio Sanz, Humberto Bustince, Oscar Cordón, Francisco Herrera:
On the impact of Distance-based Relative Competence Weighting approach in One-vs-One classification for Evolutionary Fuzzy Systems: DRCW-FH-GBML algorithm. FUZZ-IEEE 2015: 1-7 - [c28]Pedro Villar, Alberto Fernández, Rosana Montes, Ana Maria Sánchez, Francisco Herrera:
Improving the OVO performance in Fuzzy Rule-Based Classification Systems by the genetic learning of the granularity level. FUZZ-IEEE 2015: 1-7 - [c27]Alberto Fernández, María José del Jesus, Francisco Herrera:
Addressing Overlapping in Classification with Imbalanced Datasets: A First Multi-objective Approach for Feature and Instance Selection. IDEAL 2015: 36-44 - 2014
- [j28]Alberto Fernández, Daniel Peralta, José Manuel Benítez, Francisco Herrera:
E-learning and educational data mining in cloud computing: an overview. Int. J. Learn. Technol. 9(1): 25-52 (2014) - [j27]Victoria López, Alberto Fernández, Francisco Herrera:
On the importance of the validation technique for classification with imbalanced datasets: Addressing covariate shift when data is skewed. Inf. Sci. 257: 1-13 (2014) - [j26]Mikel Galar, Alberto Fernández, Edurne Barrenechea, Francisco Herrera:
Empowering difficult classes with a similarity-based aggregation in multi-class classification problems. Inf. Sci. 264: 135-157 (2014) - [j25]Alberto Fernández, Sara del Río, Victoria López, Abdullah Bawakid, María José del Jesus, José Manuel Benítez, Francisco Herrera:
Big Data with Cloud Computing: an insight on the computing environment, MapReduce, and programming frameworks. WIREs Data Mining Knowl. Discov. 4(5): 380-409 (2014) - [c26]Mikel Galar, Edurne Barrenechea Tartas, Alberto Fernández, Francisco Herrera:
Enhancing difficult classes in one-vs-one classifier fusion strategy using restricted equivalence functions. FUSION 2014: 1-8 - 2013
- [j24]Victoria López, Alberto Fernández, Salvador García, Vasile Palade, Francisco Herrera:
An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250: 113-141 (2013) - [j23]Victoria López, Alberto Fernández, María José del Jesus, Francisco Herrera:
A hierarchical genetic fuzzy system based on genetic programming for addressing classification with highly imbalanced and borderline data-sets. Knowl. Based Syst. 38: 85-104 (2013) - [j22]Alberto Fernández, Victoria López, Mikel Galar, María José del Jesus, Francisco Herrera:
Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowl. Based Syst. 42: 97-110 (2013) - [j21]Mikel Galar, Alberto Fernández, Edurne Barrenechea Tartas, Humberto Bustince Sola, Francisco Herrera:
Dynamic classifier selection for One-vs-One strategy: Avoiding non-competent classifiers. Pattern Recognit. 46(12): 3412-3424 (2013) - [j20]Mikel Galar, Alberto Fernández, Edurne Barrenechea Tartas, Francisco Herrera:
EUSBoost: Enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern Recognit. 46(12): 3460-3471 (2013) - [j19]José Antonio Sanz, Alberto Fernández, Humberto Bustince, Francisco Herrera:
IVTURS: A Linguistic Fuzzy Rule-Based Classification System Based On a New Interval-Valued Fuzzy Reasoning Method With Tuning and Rule Selection. IEEE Trans. Fuzzy Syst. 21(3): 399-411 (2013) - [c25]Victoria López, Alberto Fernández, Francisco Herrera:
Addressing covariate shift for Genetic Fuzzy Systems classifiers: A case of study with FARC-HD for imbalanced datasets. FUZZ-IEEE 2013: 1-8 - 2012
- [j18]Victoria López, Alberto Fernández, Jose G. Moreno-Torres, Francisco Herrera:
Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Syst. Appl. 39(7): 6585-6608 (2012) - [j17]Pedro Villar, Alberto Fernández, Ramón Alberto Carrasco, Francisco Herrera:
Feature Selection and Granularity Learning in Genetic Fuzzy Rule-Based Classification Systems for Highly Imbalanced Data-Sets. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 20(3): 369-397 (2012) - [j16]Mikel Galar, Alberto Fernández, Edurne Barrenechea Tartas, Humberto Bustince Sola, Francisco Herrera:
A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man Cybern. Part C 42(4): 463-484 (2012) - [c24]Victoria López, Alberto Fernández, María José del Jesus, Francisco Herrera:
Cost Sensitive and Preprocessing for Classification with Imbalanced Data-sets: Similar Behaviour and Potential Hybridizations. ICPRAM (2) 2012: 98-107 - [c23]Alberto Fernández, Sara del Río, Francisco Herrera, José Manuel Benítez:
An Overview on the Structure and Applications for Business Intelligence and Data Mining in Cloud Computing. KMO 2012: 559-570 - [p1]Alberto Fernández, Francisco Herrera:
Linguistic Fuzzy Rules in Data Mining: Follow-Up Mamdani Fuzzy Modeling Principle. Combining Experimentation and Theory 2012: 103-122 - 2011
- [j15]José Antonio Sanz, Alberto Fernández, Humberto Bustince Sola, Francisco Herrera:
A genetic tuning to improve the performance of Fuzzy Rule-Based Classification Systems with Interval-Valued Fuzzy Sets: Degree of ignorance and lateral position. Int. J. Approx. Reason. 52(6): 751-766 (2011) - [j14]Jesús Alcalá-Fdez, Alberto Fernández, Julián Luengo, Joaquín Derrac, Salvador García:
KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework. J. Multiple Valued Log. Soft Comput. 17(2-3): 255-287 (2011) - [j13]Mikel Galar, Alberto Fernández, Edurne Barrenechea Tartas, Humberto Bustince Sola, Francisco Herrera:
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44(8): 1761-1776 (2011) - [j12]Julián Luengo, Alberto Fernández, Salvador García, Francisco Herrera:
Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling. Soft Comput. 15(10): 1909-1936 (2011) - [c22]Edurne Barrenechea, Alberto Fernández, Francisco Herrera, Humberto Bustince:
Construction of Interval-Valued Fuzzy Preference Relations Using Ignorance Functions: Interval-Valued Non Dominance Criterion. Eurofuse 2011: 243-255 - [c21]Pedro Villar, Alberto Fernández, Francisco Herrera:
Studying the behavior of a multiobjective genetic algorithm to design fuzzy rule-based classification systems for imbalanced data-sets. FUZZ-IEEE 2011: 1239-1246 - [c20]José Antonio Sanz, Humberto Bustince Sola, Alberto Fernández, Francisco Herrera:
On the cooperation of interval-valued fuzzy sets and genetic tuning to improve the performance of fuzzy decision trees. FUZZ-IEEE 2011: 1247-1254 - [c19]Alberto Fernández, Salvador García, Francisco Herrera:
Addressing the Classification with Imbalanced Data: Open Problems and New Challenges on Class Distribution. HAIS (1) 2011: 1-10 - [c18]José Antonio Sanz, Miguel Pagola, Humberto Bustince, Antonio Brugos, Alberto Fernández, Francisco Herrera:
A case study on medical diagnosis of cardiovascular diseases using a Genetic Algorithm for Tuning Fuzzy Rule-Based Classification Systems with Interval-Valued Fuzzy Sets. T2FUZZ 2011: 9-15 - 2010
- [j11]Alberto Fernández, María Calderón, Edurne Barrenechea Tartas, Humberto Bustince Sola, Francisco Herrera:
Solving multi-class problems with linguistic fuzzy rule based classification systems based on pairwise learning and preference relations. Fuzzy Sets Syst. 161(23): 3064-3080 (2010) - [j10]Alberto Fernández, María José del Jesus, Francisco Herrera:
On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets. Inf. Sci. 180(8): 1268-1291 (2010) - [j9]Salvador García, Alberto Fernández, Julián Luengo, Francisco Herrera:
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf. Sci. 180(10): 2044-2064 (2010) - [j8]José Antonio Sanz, Alberto Fernández, Humberto Bustince Sola, Francisco Herrera:
Improving the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic amplitude tuning. Inf. Sci. 180(19): 3674-3685 (2010) - [j7]M. Dolores Pérez-Godoy, Alberto Fernández, Antonio Jesús Rivera Rivas, María José del Jesus:
Analysis of an evolutionary RBFN design algorithm, CO2RBFN, for imbalanced data sets. Pattern Recognit. Lett. 31(15): 2375-2388 (2010) - [j6]Alberto Fernández, Salvador García, Julián Luengo, Ester Bernadó-Mansilla, Francisco Herrera:
Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy, and Comparative Study. IEEE Trans. Evol. Comput. 14(6): 913-941 (2010) - [c17]José Antonio Sanz, Alberto Fernández, Humberto Bustince Sola, Francisco Herrera:
A genetic algorithm for tuning fuzzy rule-based classification systems with Interval-Valued Fuzzy Sets. FUZZ-IEEE 2010: 1-3 - [c16]Alberto Fernández, María José del Jesus, Francisco Herrera:
Analysing the Hierarchical Fuzzy Rule Based Classification Systems with genetic rule selection. GEFS 2010: 69-74 - [c15]Alberto Fernández, María José del Jesus, Francisco Herrera:
Multi-class Imbalanced Data-Sets with Linguistic Fuzzy Rule Based Classification Systems Based on Pairwise Learning. IPMU 2010: 89-98 - [c14]Pedro Villar, Alberto Fernández, Francisco Herrera:
A Genetic Algorithm for Feature Selection and Granularity Learning in Fuzzy Rule-Based Classification Systems for Highly Imbalanced Data-Sets. IPMU (1) 2010: 741-750 - [c13]Victoria López, Alberto Fernández, Francisco Herrera:
A first approach for cost-sensitive classification with linguistic Genetic Fuzzy Systems in imbalanced data-sets. ISDA 2010: 676-681
2000 – 2009
- 2009
- [j5]Salvador García, Alberto Fernández, Francisco Herrera:
Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems. Appl. Soft Comput. 9(4): 1304-1314 (2009) - [j4]Alberto Fernández, María José del Jesus, Francisco Herrera:
On the influence of an adaptive inference system in fuzzy rule based classification systems for imbalanced data-sets. Expert Syst. Appl. 36(6): 9805-9812 (2009) - [j3]Alberto Fernández, María José del Jesus, Francisco Herrera:
Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. Int. J. Approx. Reason. 50(3): 561-577 (2009) - [j2]Salvador García, Alberto Fernández, Julián Luengo, Francisco Herrera:
A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13(10): 959-977 (2009) - [c12]Alberto Fernández, Francisco José Berlanga, María José del Jesus, Francisco Herrera:
Genetic Cooperative-Competitive Fuzzy Rule Based Learning Method using Genetic Programming for Highly Imbalanced Data-Sets. IFSA/EUSFLAT Conf. 2009: 42-47 - [c11]Pedro Villar, Alberto Fernández, Francisco Herrera:
A genetic learning of the fuzzy rule-based classification system granularity for highly imbalanced data-sets. FUZZ-IEEE 2009: 1689-1694 - [c10]José Antonio Sanz, Alberto Fernández, Humberto Bustince Sola, Francisco Herrera:
A First Study on the Use of Interval-Valued Fuzzy Sets with Genetic Tuning for Classification with Imbalanced Data-Sets. HAIS 2009: 581-588 - [c9]Alberto Fernández, Julián Luengo, Joaquín Derrac, Jesús Alcalá-Fdez, Francisco Herrera:
Implementation and Integration of Algorithms into the KEEL Data-Mining Software Tool. IDEAL 2009: 562-569 - [c8]Julián Luengo, Alberto Fernández, Salvador García, Francisco Herrera:
Addressing Data-Complexity for Imbalanced Data-Sets: A Preliminary Study on the Use of Preprocessing for C4.5. ISDA 2009: 523-528 - [c7]M. Dolores Pérez-Godoy, Antonio Jesús Rivera Rivas, Alberto Fernández, María José del Jesus, Francisco Herrera:
A Preliminar Analysis of CO2RBFN in Imbalanced Problems. IWANN (1) 2009: 57-64 - [c6]Alberto Fernández, María José del Jesus, Francisco Herrera:
Improving the Performance of Fuzzy Rule Based Classification Systems for Highly Imbalanced Data-Sets Using an Evolutionary Adaptive Inference System. IWANN (1) 2009: 294-301 - 2008
- [j1]Alberto Fernández, Salvador García, María José del Jesus, Francisco Herrera:
A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets Syst. 159(18): 2378-2398 (2008) - [c5]Jesús Alcalá-Fdez, Salvador García, Francisco José Berlanga, Alberto Fernández, Luciano Sánchez, María José del Jesus, Francisco Herrera:
KEEL: A data mining software tool integrating genetic fuzzy systems. GEFS 2008: 83-88 - [c4]Alberto Fernández, María José del Jesus, Francisco Herrera:
A Short Study on the Use of Genetic 2-Tuples Tuning for Fuzzy Rule Based Classification Systems in Imbalanced Data-Sets. HIS 2008: 483-488 - 2007
- [c3]Alberto Fernández, Salvador García, María José del Jesus, Francisco Herrera:
A Study on the Use of the Fuzzy Reasoning Method Based on the Winning Rule vs. Voting Procedure for Classification with Imbalanced Data Sets. IWANN 2007: 375-382 - [c2]Alberto Fernández, Salvador García, Francisco Herrera, María José del Jesus:
An Analysis of the Rule Weights and Fuzzy Reasoning Methods for Linguistic Rule Based Classification Systems Applied to Problems with Highly Imbalanced Data Sets. WILF 2007: 170-178 - 2006
- [c1]Salvador García, José Ramón Cano, Alberto Fernández, Francisco Herrera:
A Proposal of Evolutionary Prototype Selection for Class Imbalance Problems. IDEAL 2006: 1415-1423
Coauthor Index
aka: Humberto Bustince Sola
aka: Edurne Barrenechea
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-28 21:27 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint