default search action
Micah Goldblum
Person information
- affiliation: University of Maryland, College Park, MD, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2020
- [b1]Micah Goldblum:
Adversarial Robustness and Robust Meta-Learning for Neural Networks. University of Maryland, College Park, MD, USA, 2020
Journal Articles
- 2023
- [j2]Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, Tom Goldstein:
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses. IEEE Trans. Pattern Anal. Mach. Intell. 45(2): 1563-1580 (2023) - [j1]Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan Wu, Tom Goldstein, Yu-Gang Jiang, Larry S. Davis:
Towards Transferable Adversarial Attacks on Image and Video Transformers. IEEE Trans. Image Process. 32: 6346-6358 (2023)
Conference and Workshop Papers
- 2024
- [c63]Gowthami Somepalli, Anubhav Gupta, Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas Geiping, Abhinav Shrivastava, Tom Goldstein:
Investigating Style Similarity in Diffusion Models. ECCV (66) 2024: 143-160 - [c62]Hossein Souri, Pirazh Khorramshahi, Chun Pong Lau, Micah Goldblum, Rama Chellappa:
Identifying Attack-Specific Signatures in Adversarial Examples. ICASSP 2024: 7050-7054 - [c61]Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Universal Guidance for Diffusion Models. ICLR 2024 - [c60]Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli, Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, Micah Goldblum, Jonas Geiping, Tom Goldstein:
NEFTune: Noisy Embeddings Improve Instruction Finetuning. ICLR 2024 - [c59]John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando, Aniruddha Saha, Micah Goldblum, Tom Goldstein:
On the Reliability of Watermarks for Large Language Models. ICLR 2024 - [c58]Micah Goldblum, Marc Anton Finzi, Keefer Rowan, Andrew Gordon Wilson:
Position: The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning. ICML 2024 - [c57]Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text. ICML 2024 - [c56]Sanae Lotfi, Marc Anton Finzi, Yilun Kuang, Tim G. J. Rudner, Micah Goldblum, Andrew Gordon Wilson:
Non-Vacuous Generalization Bounds for Large Language Models. ICML 2024 - [c55]Shikai Qiu, Andres Potapczynski, Marc Anton Finzi, Micah Goldblum, Andrew Gordon Wilson:
Compute Better Spent: Replacing Dense Layers with Structured Matrices. ICML 2024 - 2023
- [c54]Valeriia Cherepanova, Steven Reich, Samuel Dooley, Hossein Souri, John P. Dickerson, Micah Goldblum, Tom Goldstein:
A Deep Dive into Dataset Imbalance and Bias in Face Identification. AIES 2023: 229-247 - [c53]Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Universal Guidance for Diffusion Models. CVPR Workshops 2023: 843-852 - [c52]Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models. CVPR 2023: 6048-6058 - [c51]Yuxin Wen, Jonas Geiping, Micah Goldblum, Tom Goldstein:
STYX: Adaptive Poisoning Attacks Against Byzantine-Robust Defenses in Federated Learning. ICASSP 2023: 1-5 - [c50]Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum, Tom Goldstein:
Loss Landscapes are All You Need: Neural Network Generalization Can Be Explained Without the Implicit Bias of Gradient Descent. ICLR 2023 - [c49]Hong-Min Chu, Jonas Geiping, Liam H. Fowl, Micah Goldblum, Tom Goldstein:
Panning for Gold in Federated Learning: Targeted Text Extraction under Arbitrarily Large-Scale Aggregation. ICLR 2023 - [c48]Liam H. Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojciech Czaja, Micah Goldblum, Tom Goldstein:
Decepticons: Corrupted Transformers Breach Privacy in Federated Learning for Language Models. ICLR 2023 - [c47]Jonas Geiping, Micah Goldblum, Gowthami Somepalli, Ravid Shwartz-Ziv, Tom Goldstein, Andrew Gordon Wilson:
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization. ICLR 2023 - [c46]Nate Gruver, Marc Anton Finzi, Micah Goldblum, Andrew Gordon Wilson:
The Lie Derivative for Measuring Learned Equivariance. ICLR 2023 - [c45]Roman Levin, Valeriia Cherepanova, Avi Schwarzschild, Arpit Bansal, C. Bayan Bruss, Tom Goldstein, Andrew Gordon Wilson, Micah Goldblum:
Transfer Learning with Deep Tabular Models. ICLR 2023 - [c44]Khalid Saifullah, Yuxin Wen, Jonas Geiping, Micah Goldblum, Tom Goldstein:
Seeing in Words: Learning to Classify through Language Bottlenecks. Tiny Papers @ ICLR 2023 - [c43]Yuxin Wen, Arpit Bansal, Hamid Kazemi, Eitan Borgnia, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries. ICLR 2023 - [c42]Yuancheng Xu, Yanchao Sun, Micah Goldblum, Tom Goldstein, Furong Huang:
Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness. ICLR 2023 - [c41]Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise. NeurIPS 2023 - [c40]Valeriia Cherepanova, Roman Levin, Gowthami Somepalli, Jonas Geiping, C. Bayan Bruss, Andrew Gordon Wilson, Tom Goldstein, Micah Goldblum:
A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning. NeurIPS 2023 - [c39]Samuel Dooley, Rhea Sukthanker, John P. Dickerson, Colin White, Frank Hutter, Micah Goldblum:
Rethinking Bias Mitigation: Fairer Architectures Make for Fairer Face Recognition. NeurIPS 2023 - [c38]Micah Goldblum, Hossein Souri, Renkun Ni, Manli Shu, Viraj Prabhu, Gowthami Somepalli, Prithvijit Chattopadhyay, Mark Ibrahim, Adrien Bardes, Judy Hoffman, Rama Chellappa, Andrew Gordon Wilson, Tom Goldstein:
Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks. NeurIPS 2023 - [c37]Duncan C. McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C., Ganesh Ramakrishnan, Micah Goldblum, Colin White:
When Do Neural Nets Outperform Boosted Trees on Tabular Data? NeurIPS 2023 - [c36]Pedro Sandoval Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein:
What Can We Learn from Unlearnable Datasets? NeurIPS 2023 - [c35]Ravid Shwartz-Ziv, Micah Goldblum, Yucen Lily Li, C. Bayan Bruss, Andrew Gordon Wilson:
Simplifying Neural Network Training Under Class Imbalance. NeurIPS 2023 - [c34]Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Understanding and Mitigating Copying in Diffusion Models. NeurIPS 2023 - [c33]Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery. NeurIPS 2023 - 2022
- [c32]Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan Wu, Tom Goldstein, Yu-Gang Jiang:
Towards Transferable Adversarial Attacks on Vision Transformers. AAAI 2022: 2668-2676 - [c31]Pedro Sandoval Segura, Vasu Singla, Liam Fowl, Jonas Geiping, Micah Goldblum, David Jacobs, Tom Goldstein:
Poisons that are learned faster are more effective. CVPR Workshops 2022: 197-204 - [c30]Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping-Yeh Chiang, Yehuda Dar, Richard G. Baraniuk, Micah Goldblum, Tom Goldstein:
Can Neural Nets Learn the Same Model Twice? Investigating Reproducibility and Double Descent from the Decision Boundary Perspective. CVPR 2022: 13689-13698 - [c29]Liam H. Fowl, Jonas Geiping, Wojciech Czaja, Micah Goldblum, Tom Goldstein:
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models. ICLR 2022 - [c28]Jonas Geiping, Micah Goldblum, Phillip Pope, Michael Moeller, Tom Goldstein:
Stochastic Training is Not Necessary for Generalization. ICLR 2022 - [c27]Renkun Ni, Manli Shu, Hossein Souri, Micah Goldblum, Tom Goldstein:
The Close Relationship Between Contrastive Learning and Meta-Learning. ICLR 2022 - [c26]Avi Schwarzschild, Arjun Gupta, Amin Ghiasi, Micah Goldblum, Tom Goldstein:
The Uncanny Similarity of Recurrence and Depth. ICLR 2022 - [c25]Amin Ghiasi, Hamid Kazemi, Steven Reich, Chen Zhu, Micah Goldblum, Tom Goldstein:
Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations. ICML 2022: 7484-7512 - [c24]Sanae Lotfi, Pavel Izmailov, Gregory W. Benton, Micah Goldblum, Andrew Gordon Wilson:
Bayesian Model Selection, the Marginal Likelihood, and Generalization. ICML 2022: 14223-14247 - [c23]Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, Tom Goldstein:
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification. ICML 2022: 23668-23684 - [c22]Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, Tom Goldstein:
End-to-end Algorithm Synthesis with Recurrent Networks: Extrapolation without Overthinking. NeurIPS 2022 - [c21]Roman Levin, Manli Shu, Eitan Borgnia, Furong Huang, Micah Goldblum, Tom Goldstein:
Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability. NeurIPS 2022 - [c20]Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, Andrew Gordon Wilson:
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization. NeurIPS 2022 - [c19]Pedro Sandoval Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein, David Jacobs:
Autoregressive Perturbations for Data Poisoning. NeurIPS 2022 - [c18]Ravid Shwartz-Ziv, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu, Yann LeCun, Andrew Gordon Wilson:
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors. NeurIPS 2022 - [c17]Hossein Souri, Liam Fowl, Rama Chellappa, Micah Goldblum, Tom Goldstein:
Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch. NeurIPS 2022 - [c16]Wanqian Yang, Polina Kirichenko, Micah Goldblum, Andrew Gordon Wilson:
Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers. NeurIPS 2022 - 2021
- [c15]Micah Goldblum, Avi Schwarzschild, Ankit B. Patel, Tom Goldstein:
Adversarial attacks on machine learning systems for high-frequency trading. ICAIF 2021: 2:1-2:9 - [c14]Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas Geiping, Micah Goldblum, Tom Goldstein, Arjun Gupta:
Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks Without an Accuracy Tradeoff. ICASSP 2021: 3855-3859 - [c13]Valeriia Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan, John P. Dickerson, Gavin Taylor, Tom Goldstein:
LowKey: Leveraging Adversarial Attacks to Protect Social Media Users from Facial Recognition. ICLR 2021 - [c12]Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, Tom Goldstein:
The Intrinsic Dimension of Images and Its Impact on Learning. ICLR 2021 - [c11]Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, Tom Goldstein:
Data Augmentation for Meta-Learning. ICML 2021: 8152-8161 - [c10]Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P. Dickerson, Tom Goldstein:
Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks. ICML 2021: 9389-9398 - [c9]Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, Tom Goldstein:
Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks. NeurIPS 2021: 6695-6706 - [c8]Manli Shu, Zuxuan Wu, Micah Goldblum, Tom Goldstein:
Encoding Robustness to Image Style via Adversarial Feature Perturbations. NeurIPS 2021: 28042-28053 - [c7]Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, Tom Goldstein:
Adversarial Examples Make Strong Poisons. NeurIPS 2021: 30339-30351 - 2020
- [c6]Micah Goldblum, Liam Fowl, Soheil Feizi, Tom Goldstein:
Adversarially Robust Distillation. AAAI 2020: 3996-4003 - [c5]Ping-Yeh Chiang, Jonas Geiping, Micah Goldblum, Tom Goldstein, Renkun Ni, Steven Reich, Ali Shafahi:
Witchcraft: Efficient PGD Attacks with Random Step Size. ICASSP 2020: 3747-3751 - [c4]W. Ronny Huang, Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K. Terry, Furong Huang, Tom Goldstein:
Understanding Generalization Through Visualizations. ICBINB@NeurIPS 2020: 87-97 - [c3]Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, Tom Goldstein:
Truth or backpropaganda? An empirical investigation of deep learning theory. ICLR 2020 - [c2]Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, Tom Goldstein:
Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks. ICML 2020: 3607-3616 - [c1]Micah Goldblum, Liam Fowl, Tom Goldstein:
Adversarially Robust Few-Shot Learning: A Meta-Learning Approach. NeurIPS 2020
Informal and Other Publications
- 2024
- [i89]Abhimanyu Hans, Avi Schwarzschild, Valeriia Cherepanova, Hamid Kazemi, Aniruddha Saha, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Spotting LLMs With Binoculars: Zero-Shot Detection of Machine-Generated Text. CoRR abs/2401.12070 (2024) - [i88]Benjamin Feuer, Robin Tibor Schirrmeister, Valeriia Cherepanova, Chinmay Hegde, Frank Hutter, Micah Goldblum, Niv Cohen, Colin White:
TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks. CoRR abs/2402.11137 (2024) - [i87]Hossein Souri, Arpit Bansal, Hamid Kazemi, Liam Fowl, Aniruddha Saha, Jonas Geiping, Andrew Gordon Wilson, Rama Chellappa, Tom Goldstein, Micah Goldblum:
Generating Potent Poisons and Backdoors from Scratch with Guided Diffusion. CoRR abs/2403.16365 (2024) - [i86]Gowthami Somepalli, Anubhav Gupta, Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas Geiping, Abhinav Shrivastava, Tom Goldstein:
Measuring Style Similarity in Diffusion Models. CoRR abs/2404.01292 (2024) - [i85]Haoran Chen, Micah Goldblum, Zuxuan Wu, Yu-Gang Jiang:
Adaptive Rentention & Correction for Continual Learning. CoRR abs/2405.14318 (2024) - [i84]Shikai Qiu, Andres Potapczynski, Marc Finzi, Micah Goldblum, Andrew Gordon Wilson:
Compute Better Spent: Replacing Dense Layers with Structured Matrices. CoRR abs/2406.06248 (2024) - [i83]Sanyam Kapoor, Nate Gruver, Manley Roberts, Katherine M. Collins, Arka Pal, Umang Bhatt, Adrian Weller, Samuel Dooley, Micah Goldblum, Andrew Gordon Wilson:
Large Language Models Must Be Taught to Know What They Don't Know. CoRR abs/2406.08391 (2024) - [i82]Ravid Shwartz-Ziv, Micah Goldblum, Arpit Bansal, C. Bayan Bruss, Yann LeCun, Andrew Gordon Wilson:
Just How Flexible are Neural Networks in Practice? CoRR abs/2406.11463 (2024) - [i81]Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid Shwartz-Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, Chinmay Hegde, Yann LeCun, Tom Goldstein, Willie Neiswanger, Micah Goldblum:
LiveBench: A Challenging, Contamination-Free LLM Benchmark. CoRR abs/2406.19314 (2024) - [i80]Sanae Lotfi, Yilun Kuang, Brandon Amos, Micah Goldblum, Marc Finzi, Andrew Gordon Wilson:
Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models. CoRR abs/2407.18158 (2024) - [i79]Benjamin Feuer, Micah Goldblum, Teresa Datta, Sanjana Nambiar, Raz Besaleli, Samuel Dooley, Max Cembalest, John P. Dickerson:
Style Outweighs Substance: Failure Modes of LLM Judges in Alignment Benchmarking. CoRR abs/2409.15268 (2024) - [i78]Andres Potapczynski, Shikai Qiu, Marc Finzi, Christopher Ferri, Zixi Chen, Micah Goldblum, C. Bayan Bruss, Christopher De Sa, Andrew Gordon Wilson:
Searching for Efficient Linear Layers over a Continuous Space of Structured Matrices. CoRR abs/2410.02117 (2024) - [i77]Alex Stein, Samuel Sharpe, Doron Bergman, Senthil Kumar, C. Bayan Bruss, John Dickerson, Tom Goldstein, Micah Goldblum:
A Simple Baseline for Predicting Events with Auto-Regressive Tabular Transformers. CoRR abs/2410.10648 (2024) - 2023
- [i76]Yuancheng Xu, Yanchao Sun, Micah Goldblum, Tom Goldstein, Furong Huang:
Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness. CoRR abs/2302.03015 (2023) - [i75]Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Hard Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery. CoRR abs/2302.03668 (2023) - [i74]Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Universal Guidance for Diffusion Models. CoRR abs/2302.07121 (2023) - [i73]Micah Goldblum, Marc Finzi, Keefer Rowan, Andrew Gordon Wilson:
The No Free Lunch Theorem, Kolmogorov Complexity, and the Role of Inductive Biases in Machine Learning. CoRR abs/2304.05366 (2023) - [i72]Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Florian Bordes, Adrien Bardes, Grégoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gordon Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash, Yann LeCun, Micah Goldblum:
A Cookbook of Self-Supervised Learning. CoRR abs/2304.12210 (2023) - [i71]Duncan C. McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C., Ganesh Ramakrishnan, Micah Goldblum, Colin White:
When Do Neural Nets Outperform Boosted Trees on Tabular Data? CoRR abs/2305.02997 (2023) - [i70]Pedro Sandoval Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein:
What Can We Learn from Unlearnable Datasets? CoRR abs/2305.19254 (2023) - [i69]Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Understanding and Mitigating Copying in Diffusion Models. CoRR abs/2305.20086 (2023) - [i68]John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando, Aniruddha Saha, Micah Goldblum, Tom Goldstein:
On the Reliability of Watermarks for Large Language Models. CoRR abs/2306.04634 (2023) - [i67]Neel Jain, Khalid Saifullah, Yuxin Wen, John Kirchenbauer, Manli Shu, Aniruddha Saha, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Bring Your Own Data! Self-Supervised Evaluation for Large Language Models. CoRR abs/2306.13651 (2023) - [i66]Khalid Saifullah, Yuxin Wen, Jonas Geiping, Micah Goldblum, Tom Goldstein:
Seeing in Words: Learning to Classify through Language Bottlenecks. CoRR abs/2307.00028 (2023) - [i65]Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, Tom Goldstein:
Baseline Defenses for Adversarial Attacks Against Aligned Language Models. CoRR abs/2309.00614 (2023) - [i64]Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli, Brian R. Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, Micah Goldblum, Jonas Geiping, Tom Goldstein:
NEFTune: Noisy Embeddings Improve Instruction Finetuning. CoRR abs/2310.05914 (2023) - [i63]Micah Goldblum, Hossein Souri, Renkun Ni, Manli Shu, Viraj Prabhu, Gowthami Somepalli, Prithvijit Chattopadhyay, Mark Ibrahim, Adrien Bardes, Judy Hoffman, Rama Chellappa, Andrew Gordon Wilson, Tom Goldstein:
Battle of the Backbones: A Large-Scale Comparison of Pretrained Models across Computer Vision Tasks. CoRR abs/2310.19909 (2023) - [i62]Vasu Singla, Pedro Sandoval Segura, Micah Goldblum, Jonas Geiping, Tom Goldstein:
A Simple and Efficient Baseline for Data Attribution on Images. CoRR abs/2311.03386 (2023) - [i61]Valeriia Cherepanova, Roman Levin, Gowthami Somepalli, Jonas Geiping, C. Bayan Bruss, Andrew Gordon Wilson, Tom Goldstein, Micah Goldblum:
A Performance-Driven Benchmark for Feature Selection in Tabular Deep Learning. CoRR abs/2311.05877 (2023) - [i60]Ravid Shwartz-Ziv, Micah Goldblum, Yucen Lily Li, C. Bayan Bruss, Andrew Gordon Wilson:
Simplifying Neural Network Training Under Class Imbalance. CoRR abs/2312.02517 (2023) - [i59]Micah Goldblum, Anima Anandkumar, Richard G. Baraniuk, Tom Goldstein, Kyunghyun Cho, Zachary C. Lipton, Melanie Mitchell, Preetum Nakkiran, Max Welling, Andrew Gordon Wilson:
Perspectives on the State and Future of Deep Learning - 2023. CoRR abs/2312.09323 (2023) - [i58]Sanae Lotfi, Marc Finzi, Yilun Kuang, Tim G. J. Rudner, Micah Goldblum, Andrew Gordon Wilson:
Non-Vacuous Generalization Bounds for Large Language Models. CoRR abs/2312.17173 (2023) - 2022
- [i57]Liam Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojtek Czaja, Micah Goldblum, Tom Goldstein:
Decepticons: Corrupted Transformers Breach Privacy in Federated Learning for Language Models. CoRR abs/2201.12675 (2022) - [i56]Amin Ghiasi, Hamid Kazemi, Steven Reich, Chen Zhu, Micah Goldblum, Tom Goldstein:
Plug-In Inversion: Model-Agnostic Inversion for Vision with Data Augmentations. CoRR abs/2201.12961 (2022) - [i55]Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, Tom Goldstein:
Fishing for User Data in Large-Batch Federated Learning via Gradient Magnification. CoRR abs/2202.00580 (2022) - [i54]Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, Tom Goldstein:
End-to-end Algorithm Synthesis with Recurrent Networks: Logical Extrapolation Without Overthinking. CoRR abs/2202.05826 (2022) - [i53]Sanae Lotfi, Pavel Izmailov, Gregory W. Benton, Micah Goldblum, Andrew Gordon Wilson:
Bayesian Model Selection, the Marginal Likelihood, and Generalization. CoRR abs/2202.11678 (2022) - [i52]Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping-Yeh Chiang, Yehuda Dar, Richard G. Baraniuk, Micah Goldblum, Tom Goldstein:
Can Neural Nets Learn the Same Model Twice? Investigating Reproducibility and Double Descent from the Decision Boundary Perspective. CoRR abs/2203.08124 (2022) - [i51]Valeriia Cherepanova, Steven Reich, Samuel Dooley, Hossein Souri, Micah Goldblum, Tom Goldstein:
A Deep Dive into Dataset Imbalance and Bias in Face Identification. CoRR abs/2203.08235 (2022) - [i50]Pedro Sandoval Segura, Vasu Singla, Liam Fowl, Jonas Geiping, Micah Goldblum, David Jacobs, Tom Goldstein:
Poisons that are learned faster are more effective. CoRR abs/2204.08615 (2022) - [i49]Ravid Shwartz-Ziv, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu, Yann LeCun, Andrew Gordon Wilson:
Pre-Train Your Loss: Easy Bayesian Transfer Learning with Informative Priors. CoRR abs/2205.10279 (2022) - [i48]Pedro Sandoval Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein, David W. Jacobs:
Autoregressive Perturbations for Data Poisoning. CoRR abs/2206.03693 (2022) - [i47]Roman Levin, Valeriia Cherepanova, Avi Schwarzschild, Arpit Bansal, C. Bayan Bruss, Tom Goldstein, Andrew Gordon Wilson, Micah Goldblum:
Transfer Learning with Deep Tabular Models. CoRR abs/2206.15306 (2022) - [i46]Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie S. Li, Hamid Kazemi, Furong Huang, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise. CoRR abs/2208.09392 (2022) - [i45]Nate Gruver, Marc Finzi, Micah Goldblum, Andrew Gordon Wilson:
The Lie Derivative for Measuring Learned Equivariance. CoRR abs/2210.02984 (2022) - [i44]Jonas Geiping, Micah Goldblum, Gowthami Somepalli, Ravid Shwartz-Ziv, Tom Goldstein, Andrew Gordon Wilson:
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization. CoRR abs/2210.06441 (2022) - [i43]Yuxin Wen, Jonas Geiping, Liam Fowl, Hossein Souri, Rama Chellappa, Micah Goldblum, Tom Goldstein:
Thinking Two Moves Ahead: Anticipating Other Users Improves Backdoor Attacks in Federated Learning. CoRR abs/2210.09305 (2022) - [i42]Rhea Sukthanker, Samuel Dooley, John P. Dickerson, Colin White, Frank Hutter, Micah Goldblum:
On the Importance of Architectures and Hyperparameters for Fairness in Face Recognition. CoRR abs/2210.09943 (2022) - [i41]Yuxin Wen, Arpit Bansal, Hamid Kazemi, Eitan Borgnia, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Canary in a Coalmine: Better Membership Inference with Ensembled Adversarial Queries. CoRR abs/2210.10750 (2022) - [i40]Renkun Ni, Ping-yeh Chiang, Jonas Geiping, Micah Goldblum, Andrew Gordon Wilson, Tom Goldstein:
K-SAM: Sharpness-Aware Minimization at the Speed of SGD. CoRR abs/2210.12864 (2022) - [i39]Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, Andrew Gordon Wilson:
PAC-Bayes Compression Bounds So Tight That They Can Explain Generalization. CoRR abs/2211.13609 (2022) - [i38]Wanqian Yang, Polina Kirichenko, Micah Goldblum, Andrew Gordon Wilson:
Chroma-VAE: Mitigating Shortcut Learning with Generative Classifiers. CoRR abs/2211.15231 (2022) - [i37]Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, Tom Goldstein:
Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models. CoRR abs/2212.03860 (2022) - [i36]Amin Ghiasi, Hamid Kazemi, Eitan Borgnia, Steven Reich, Manli Shu, Micah Goldblum, Andrew Gordon Wilson, Tom Goldstein:
What do Vision Transformers Learn? A Visual Exploration. CoRR abs/2212.06727 (2022) - 2021
- [i35]Valeriia Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan, John P. Dickerson, Gavin Taylor, Tom Goldstein:
LowKey: Leveraging Adversarial Attacks to Protect Social Media Users from Facial Recognition. CoRR abs/2101.07922 (2021) - [i34]Valeriia Cherepanova, Vedant Nanda, Micah Goldblum, John P. Dickerson, Tom Goldstein:
Technical Challenges for Training Fair Neural Networks. CoRR abs/2102.06764 (2021) - [i33]Avi Schwarzschild, Arjun Gupta, Micah Goldblum, Tom Goldstein:
Thinking Deeply with Recurrence: Generalizing from Easy to Hard Sequential Reasoning Problems. CoRR abs/2102.11011 (2021) - [i32]Jonas Geiping, Liam Fowl, Gowthami Somepalli, Micah Goldblum, Michael Moeller, Tom Goldstein:
What Doesn't Kill You Makes You Robust(er): Adversarial Training against Poisons and Backdoors. CoRR abs/2102.13624 (2021) - [i31]Eitan Borgnia, Jonas Geiping, Valeriia Cherepanova, Liam Fowl, Arjun Gupta, Amin Ghiasi, Furong Huang, Micah Goldblum, Tom Goldstein:
DP-InstaHide: Provably Defusing Poisoning and Backdoor Attacks with Differentially Private Data Augmentations. CoRR abs/2103.02079 (2021) - [i30]Liam Fowl, Ping-yeh Chiang, Micah Goldblum, Jonas Geiping, Arpit Bansal, Wojtek Czaja, Tom Goldstein:
Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure Dataset Release. CoRR abs/2103.02683 (2021) - [i29]Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, Tom Goldstein:
The Intrinsic Dimension of Images and Its Impact on Learning. CoRR abs/2104.08894 (2021) - [i28]Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C. Bayan Bruss, Tom Goldstein:
SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training. CoRR abs/2106.01342 (2021) - [i27]Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum, Tom Goldstein:
Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks. CoRR abs/2106.04537 (2021) - [i26]Hossein Souri, Micah Goldblum, Liam Fowl, Rama Chellappa, Tom Goldstein:
Sleeper Agent: Scalable Hidden Trigger Backdoors for Neural Networks Trained from Scratch. CoRR abs/2106.08970 (2021) - [i25]Arpit Bansal, Micah Goldblum, Valeriia Cherepanova, Avi Schwarzschild, C. Bayan Bruss, Tom Goldstein:
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data. CoRR abs/2106.09643 (2021) - [i24]Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojtek Czaja, Tom Goldstein:
Adversarial Examples Make Strong Poisons. CoRR abs/2106.10807 (2021) - [i23]Roman Levin, Manli Shu, Eitan Borgnia, Furong Huang, Micah Goldblum, Tom Goldstein:
Where do Models go Wrong? Parameter-Space Saliency Maps for Explainability. CoRR abs/2108.01335 (2021) - [i22]Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Arpit Bansal, Zeyad Emam, Furong Huang, Micah Goldblum, Tom Goldstein:
Datasets for Studying Generalization from Easy to Hard Examples. CoRR abs/2108.06011 (2021) - [i21]Zhipeng Wei, Jingjing Chen, Micah Goldblum, Zuxuan Wu, Tom Goldstein, Yu-Gang Jiang:
Towards Transferable Adversarial Attacks on Vision Transformers. CoRR abs/2109.04176 (2021) - [i20]Jonas Geiping, Micah Goldblum, Phillip E. Pope, Michael Moeller, Tom Goldstein:
Stochastic Training is Not Necessary for Generalization. CoRR abs/2109.14119 (2021) - [i19]Hossein Souri, Pirazh Khorramshahi, Chun Pong Lau, Micah Goldblum, Rama Chellappa:
Identification of Attack-Specific Signatures in Adversarial Examples. CoRR abs/2110.06802 (2021) - [i18]Samuel Dooley, Ryan Downing, George Z. Wei, Nathan Shankar, Bradon Thymes, Gudrun Thorkelsdottir, Tiye Kurtz-Miott, Rachel Mattson, Olufemi Obiwumi, Valeriia Cherepanova, Micah Goldblum, John P. Dickerson, Tom Goldstein:
Comparing Human and Machine Bias in Face Recognition. CoRR abs/2110.08396 (2021) - [i17]Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, Tom Goldstein:
Robbing the Fed: Directly Obtaining Private Data in Federated Learning with Modified Models. CoRR abs/2110.13057 (2021) - [i16]Zeyad Ali Sami Emam, Hong-Min Chu, Ping-Yeh Chiang, Wojciech Czaja, Richard Leapman, Micah Goldblum, Tom Goldstein:
Active Learning at the ImageNet Scale. CoRR abs/2111.12880 (2021) - 2020
- [i15]Micah Goldblum, Steven Reich, Liam Fowl, Renkun Ni, Valeriia Cherepanova, Tom Goldstein:
Unraveling Meta-Learning: Understanding Feature Representations for Few-Shot Tasks. CoRR abs/2002.06753 (2020) - [i14]Micah Goldblum, Avi Schwarzschild, Naftali Cohen, Tucker Balch, Ankit B. Patel, Tom Goldstein:
Adversarial Attacks on Machine Learning Systems for High-Frequency Trading. CoRR abs/2002.09565 (2020) - [i13]Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P. Dickerson, Tom Goldstein:
Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks. CoRR abs/2006.12557 (2020) - [i12]Manli Shu, Zuxuan Wu, Micah Goldblum, Tom Goldstein:
Prepare for the Worst: Generalizing across Domain Shifts with Adversarial Batch Normalization. CoRR abs/2009.08965 (2020) - [i11]David Tran, Alex Valtchanov, Keshav Ganapathy, Raymond Feng, Eric Slud, Micah Goldblum, Tom Goldstein:
An Open Review of OpenReview: A Critical Analysis of the Machine Learning Conference Review Process. CoRR abs/2010.05137 (2020) - [i10]Liam Fowl, Micah Goldblum, Arjun Gupta, Amr Sharaf, Tom Goldstein:
Random Network Distillation as a Diversity Metric for Both Image and Text Generation. CoRR abs/2010.06715 (2020) - [i9]Renkun Ni, Micah Goldblum, Amr Sharaf, Kezhi Kong, Tom Goldstein:
Data Augmentation for Meta-Learning. CoRR abs/2010.07092 (2020) - [i8]Eitan Borgnia, Valeriia Cherepanova, Liam Fowl, Amin Ghiasi, Jonas Geiping, Micah Goldblum, Tom Goldstein, Arjun Gupta:
Strong Data Augmentation Sanitizes Poisoning and Backdoor Attacks Without an Accuracy Tradeoff. CoRR abs/2011.09527 (2020) - [i7]David Tran, Alex Valtchanov, Keshav Ganapathy, Raymond Feng, Eric Slud, Micah Goldblum, Tom Goldstein:
Analyzing the Machine Learning Conference Review Process. CoRR abs/2011.12919 (2020) - [i6]Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song, Aleksander Madry, Bo Li, Tom Goldstein:
Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and Defenses. CoRR abs/2012.10544 (2020) - 2019
- [i5]Micah Goldblum, Liam Fowl, Soheil Feizi, Tom Goldstein:
Adversarially Robust Distillation. CoRR abs/1905.09747 (2019) - [i4]W. Ronny Huang, Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K. Terry, Furong Huang, Tom Goldstein:
Understanding Generalization through Visualizations. CoRR abs/1906.03291 (2019) - [i3]Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, Tom Goldstein:
Truth or Backpropaganda? An Empirical Investigation of Deep Learning Theory. CoRR abs/1910.00359 (2019) - [i2]Micah Goldblum, Liam Fowl, Tom Goldstein:
Robust Few-Shot Learning with Adversarially Queried Meta-Learners. CoRR abs/1910.00982 (2019) - [i1]Ping-Yeh Chiang, Jonas Geiping, Micah Goldblum, Tom Goldstein, Renkun Ni, Steven Reich, Ali Shafahi:
WITCHcraft: Efficient PGD attacks with random step size. CoRR abs/1911.07989 (2019)
Coauthor Index
aka: Ping-yeh Chiang
aka: John P. Dickerson
aka: Marc Anton Finzi
aka: Liam H. Fowl
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-12 22:00 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint