default search action
Artur M. Schweidtmann
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j17]Prodromos Daoutidis, Jay H. Lee, Srinivas Rangarajan, Leo Chiang, R. Bhushan Gopaluni, Artur M. Schweidtmann, Iiro Harjunkoski, Mehmet Mercangöz, Ali Mesbah, Fani Boukouvala, Fernando V. Lima, Ehecatl Antonio del Rio-Chanona, Christos Georgakis:
Machine learning in process systems engineering: Challenges and opportunities. Comput. Chem. Eng. 181: 108523 (2024) - [j16]Tom McDonald, Calvin Tsay, Artur M. Schweidtmann, Neil Yorke-Smith:
Mixed-integer optimisation of graph neural networks for computer-aided molecular design. Comput. Chem. Eng. 185: 108660 (2024) - [i20]Michal Tkác, Jakub Sieber, Lara Kuhlmann, Matthias Brueggenolte, Alexandru Rinciog, Michael Henke, Artur M. Schweidtmann, Qinghe Gao, Maximilian F. Theisen, Radwa El Shawi:
MachineLearnAthon: An Action-Oriented Machine Learning Didactic Concept. CoRR abs/2401.16291 (2024) - [i19]Yidong Zhao, Joao Tourais, Iain Pierce, Christian Nitsche, Thomas A. Treibel, Sebastian Weingärtner, Artur M. Schweidtmann, Qian Tao:
Bayesian Uncertainty Estimation by Hamiltonian Monte Carlo: Applications to Cardiac MRI Segmentation. CoRR abs/2403.02311 (2024) - [i18]Lukas Schulze Balhorn, Kevin Degens, Artur M. Schweidtmann:
Graph-to-SFILES: Control structure prediction from process topologies using generative artificial intelligence. CoRR abs/2412.00508 (2024) - 2023
- [j15]Moritz J. Begall, Artur M. Schweidtmann, Adel Mhamdi, Alexander Mitsos:
Geometry optimization of a continuous millireactor via CFD and Bayesian optimization. Comput. Chem. Eng. 171: 108140 (2023) - [j14]Jan G. Rittig, Karim Ben Hicham, Artur M. Schweidtmann, Manuel Dahmen, Alexander Mitsos:
Graph neural networks for temperature-dependent activity coefficient prediction of solutes in ionic liquids. Comput. Chem. Eng. 171: 108153 (2023) - [j13]Gabriel Vogel, Lukas Schulze Balhorn, Artur M. Schweidtmann:
Learning from flowsheets: A generative transformer model for autocompletion of flowsheets. Comput. Chem. Eng. 171: 108162 (2023) - [j12]Artur M. Schweidtmann, Jan G. Rittig, Jana M. Weber, Martin Grohe, Manuel Dahmen, Kai Leonhard, Alexander Mitsos:
Physical pooling functions in graph neural networks for molecular property prediction. Comput. Chem. Eng. 172: 108202 (2023) - [d2]Lukas Schulze Balhorn, Jana M. Weber, Stefan Buijsman, Julian Romeo Hildebrandt, Martina Ziefle, Artur M. Schweidtmann:
Supplementary information to "What does ChatGPT know about natural science and engineering?". Zenodo, 2023 - [d1]Artur M. Schweidtmann, Jan G. Rittig, Jana M. Weber, Martin Grohe, Manuel Dahmen, Kai Leonhard, Alexander Mitsos:
Software for "Physical Pooling Functions in Graph Neural Networks for Molecular Property Prediction". Zenodo, 2023 - [i17]Qinghe Gao, Haoyu Yang, Shachi M. Shanbhag, Artur M. Schweidtmann:
Transfer learning for process design with reinforcement learning. CoRR abs/2302.03375 (2023) - [i16]Lukas Schulze Balhorn, Edwin Hirtreiter, Lynn Luderer, Artur M. Schweidtmann:
Data augmentation for machine learning of chemical process flowsheets. CoRR abs/2302.03379 (2023) - [i15]Qinghe Gao, Artur M. Schweidtmann:
Deep reinforcement learning for process design: Review and perspective. CoRR abs/2308.07822 (2023) - [i14]Luise F. Kaven, Artur M. Schweidtmann, Jan Keil, Jana Israel, Nadja Wolter, Alexander Mitsos:
Data-driven Product-Process Optimization of N-isopropylacrylamide Microgel Flow-Synthesis. CoRR abs/2308.16724 (2023) - [i13]Lukas Schulze Balhorn, Jana M. Weber, Stefan Buijsman, Julian Romeo Hildebrandt, Martina Ziefle, Artur M. Schweidtmann:
What does ChatGPT know about natural science and engineering? CoRR abs/2309.10048 (2023) - [i12]Tom McDonald, Calvin Tsay, Artur M. Schweidtmann, Neil Yorke-Smith:
Mixed-Integer Optimisation of Graph Neural Networks for Computer-Aided Molecular Design. CoRR abs/2312.01228 (2023) - [i11]Lukas Schulze Balhorn, Marc Caballero, Artur M. Schweidtmann:
Toward autocorrection of chemical process flowsheets using large language models. CoRR abs/2312.02873 (2023) - 2022
- [j11]Kilian Merkelbach, Artur M. Schweidtmann, Younes Müller, Patrick Schwoebel, Adel Mhamdi, Alexander Mitsos, Andreas Schuppert, Thomas Mrziglod, Sebastian Schneckener:
HybridML: Open source platform for hybrid modeling. Comput. Chem. Eng. 160: 107736 (2022) - [c1]Yidong Zhao, Changchun Yang, Artur M. Schweidtmann, Qian Tao:
Efficient Bayesian Uncertainty Estimation for nnU-Net. MICCAI (8) 2022: 535-544 - [i10]Jan G. Rittig, Martin Ritzert, Artur M. Schweidtmann, Stefanie Winkler, Jana M. Weber, Philipp Morsch, K. Alexander Heufer, Martin Grohe, Alexander Mitsos, Manuel Dahmen:
Graph Machine Learning for Design of High-Octane Fuels. CoRR abs/2206.00619 (2022) - [i9]Jan G. Rittig, Karim Ben Hicham, Artur M. Schweidtmann, Manuel Dahmen, Alexander Mitsos:
Graph Neural Networks for Temperature-Dependent Activity Coefficient Prediction of Solutes in Ionic Liquids. CoRR abs/2206.11776 (2022) - [i8]Laura Stops, Roel Leenhouts, Qinghe Gao, Artur M. Schweidtmann:
Flowsheet synthesis through hierarchical reinforcement learning and graph neural networks. CoRR abs/2207.12051 (2022) - [i7]Artur M. Schweidtmann, Jan G. Rittig, Jana M. Weber, Martin Grohe, Manuel Dahmen, Kai Leonhard, Alexander Mitsos:
Physical Pooling Functions in Graph Neural Networks for Molecular Property Prediction. CoRR abs/2207.13779 (2022) - [i6]Gabriel Vogel, Lukas Schulze Balhorn, Edwin Hirtreiter, Artur M. Schweidtmann:
SFILES 2.0: An extended text-based flowsheet representation. CoRR abs/2208.00778 (2022) - [i5]Gabriel Vogel, Lukas Schulze Balhorn, Artur M. Schweidtmann:
Learning from flowsheets: A generative transformer model for autocompletion of flowsheets. CoRR abs/2208.00859 (2022) - [i4]Jan G. Rittig, Qinghe Gao, Manuel Dahmen, Alexander Mitsos, Artur M. Schweidtmann:
Graph neural networks for the prediction of molecular structure-property relationships. CoRR abs/2208.04852 (2022) - [i3]Edwin Hirtreiter, Lukas Schulze Balhorn, Artur M. Schweidtmann:
Towards automatic generation of Piping and Instrumentation Diagrams (P&IDs) with Artificial Intelligence. CoRR abs/2211.05583 (2022) - [i2]Yidong Zhao, Changchun Yang, Artur M. Schweidtmann, Qian Tao:
Efficient Bayesian Uncertainty Estimation for nnU-Net. CoRR abs/2212.06278 (2022) - 2021
- [b1]Artur M. Schweidtmann:
Global optimization of processes through machine learning. RWTH Aachen University, Germany, 2021 - [j10]Ulf W. Liebal, Sebastian Köbbing, Linus Netze, Artur M. Schweidtmann, Alexander Mitsos, Lars M. Blank:
Insight to Gene Expression From Promoter Libraries With the Machine Learning Workflow Exp2Ipynb. Frontiers Bioinform. 1 (2021) - [j9]Artur M. Schweidtmann, Dominik Bongartz, Daniel Grothe, Tim Kerkenhoff, Xiaopeng Lin, Jaromil Najman, Alexander Mitsos:
Deterministic global optimization with Gaussian processes embedded. Math. Program. Comput. 13(3): 553-581 (2021) - 2020
- [j8]Pascal Schäfer, Artur M. Schweidtmann, Philipp H. A. Lenz, Hannah M. C. Markgraf, Alexander Mitsos:
Wavelet-based grid-adaptation for nonlinear scheduling subject to time-variable electricity prices. Comput. Chem. Eng. 132 (2020) - [j7]Wolfgang R. Huster, Artur M. Schweidtmann, Jannik T. Lüthje, Alexander Mitsos:
Deterministic global superstructure-based optimization of an organic Rankine cycle. Comput. Chem. Eng. 141: 106996 (2020) - [i1]Artur M. Schweidtmann, Dominik Bongartz, Daniel Grothe, Tim Kerkenhoff, Xiaopeng Lin, Jaromil Najman, Alexander Mitsos:
Global Optimization of Gaussian processes. CoRR abs/2005.10902 (2020)
2010 – 2019
- 2019
- [j6]Pascal Schäfer, Hermann Graf Westerholt, Artur M. Schweidtmann, Svetlina Ilieva, Alexander Mitsos:
Model-based bidding strategies on the primary balancing market for energy-intense processes. Comput. Chem. Eng. 120: 4-14 (2019) - [j5]Artur M. Schweidtmann, Wolfgang R. Huster, Jannik T. Lüthje, Alexander Mitsos:
Deterministic global process optimization: Accurate (single-species) properties via artificial neural networks. Comput. Chem. Eng. 121: 67-74 (2019) - [j4]Artur M. Schweidtmann, Alexander Mitsos:
Deterministic Global Optimization with Artificial Neural Networks Embedded. J. Optim. Theory Appl. 180(3): 925-948 (2019) - 2018
- [j3]Eric Bradford, Artur M. Schweidtmann, Dongda Zhang, Keju Jing, Ehecatl Antonio del Rio-Chanona:
Dynamic modeling and optimization of sustainable algal production with uncertainty using multivariate Gaussian processes. Comput. Chem. Eng. 118: 143-158 (2018) - [j2]Eric Bradford, Artur M. Schweidtmann, Alexei A. Lapkin:
Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm. J. Glob. Optim. 71(2): 407-438 (2018) - [j1]Eric Bradford, Artur M. Schweidtmann, Alexei A. Lapkin:
Correction to: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm. J. Glob. Optim. 71(2): 439-440 (2018)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:01 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint