


default search action
Francesco Locatello
Person information
- affiliation: Institute of Science and Technology Austria, Klosterneuburg, Austria
- affiliation (former): Amazon, Tübingen, Germany
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c68]Philipp Michael Faller, Leena C. Vankadara, Atalanti-Anastasia Mastakouri, Francesco Locatello, Dominik Janzing:
Self-Compatibility: Evaluating Causal Discovery without Ground Truth. AISTATS 2024: 4132-4140 - [c67]Ke Fan, Zechen Bai, Tianjun Xiao, Tong He, Max Horn, Yanwei Fu, Francesco Locatello, Zheng Zhang:
Adaptive Slot Attention: Object Discovery with Dynamic Slot Number. CVPR 2024: 23062-23071 - [c66]Avinash Kori, Francesco Locatello, Fabio De Sousa Ribeiro, Francesca Toni, Ben Glocker:
Grounded Object-Centric Learning. ICLR 2024 - [c65]Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius von Kügelgen, Francesco Locatello:
Multi-View Causal Representation Learning with Partial Observability. ICLR 2024 - [c64]Md Rifat Arefin, Yan Zhang, Aristide Baratin, Francesco Locatello, Irina Rish, Dianbo Liu, Kenji Kawaguchi:
Unsupervised Concept Discovery Mitigates Spurious Correlations. ICML 2024 - [c63]Adeel Pervez, Francesco Locatello, Stratis Gavves:
Mechanistic Neural Networks for Scientific Machine Learning. ICML 2024 - [c62]Danru Xu, Dingling Yao, Sébastien Lachapelle, Perouz Taslakian, Julius von Kügelgen, Francesco Locatello, Sara Magliacane:
A Sparsity Principle for Partially Observable Causal Representation Learning. ICML 2024 - [c61]Riccardo Cadei, Lukas Lindorfer, Sylvia Cremer, Cordelia Schmid, Francesco Locatello:
Smoke and Mirrors in Causal Downstream Tasks. NeurIPS 2024 - [c60]Tianyu Chen, Kevin Bello, Francesco Locatello, Bryon Aragam, Pradeep Ravikumar:
Identifying General Mechanism Shifts in Linear Causal Representations. NeurIPS 2024 - [c59]Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, Emanuele Rodolà:
Latent Functional Maps: a spectral framework for representation alignment. NeurIPS 2024 - [c58]Avinash Kori, Francesco Locatello, Ainkaran Santhirasekaram, Francesca Toni, Ben Glocker, Fabio De Sousa Ribeiro:
Identifiable Object-Centric Representation Learning via Probabilistic Slot Attention. NeurIPS 2024 - [c57]Dingling Yao, Caroline Muller, Francesco Locatello:
Marrying Causal Representation Learning with Dynamical Systems for Science. NeurIPS 2024 - [e2]Francesco Locatello, Vanessa Didelez:
Causal Learning and Reasoning, 1-3 April 2024, Los Angeles, California, USA. Proceedings of Machine Learning Research 236, PMLR 2024 [contents] - [i85]Sindy Löwe, Francesco Locatello, Max Welling:
Binding Dynamics in Rotating Features. CoRR abs/2402.05627 (2024) - [i84]Adeel Pervez, Francesco Locatello, Efstratios Gavves:
Mechanistic Neural Networks for Scientific Machine Learning. CoRR abs/2402.13077 (2024) - [i83]Md Rifat Arefin, Yan Zhang, Aristide Baratin, Francesco Locatello, Irina Rish, Dianbo Liu, Kenji Kawaguchi:
Unsupervised Concept Discovery Mitigates Spurious Correlations. CoRR abs/2402.13368 (2024) - [i82]Danru Xu, Dingling Yao, Sébastien Lachapelle, Perouz Taslakian, Julius von Kügelgen, Francesco Locatello, Sara Magliacane:
A Sparsity Principle for Partially Observable Causal Representation Learning. CoRR abs/2403.08335 (2024) - [i81]Alp Eren Sari, Francesco Locatello, Paolo Favaro:
Two Tricks to Improve Unsupervised Segmentation Learning. CoRR abs/2404.03392 (2024) - [i80]Dingling Yao, Caroline Muller, Francesco Locatello:
Marrying Causal Representation Learning with Dynamical Systems for Science. CoRR abs/2405.13888 (2024) - [i79]Francesco Montagna, Max Cairney-Leeming, Dhanya Sridhar, Francesco Locatello:
Demystifying amortized causal discovery with transformers. CoRR abs/2405.16924 (2024) - [i78]Riccardo Cadei, Lukas Lindorfer, Sylvia Cremer, Cordelia Schmid, Francesco Locatello:
Smoke and Mirrors in Causal Downstream Tasks. CoRR abs/2405.17151 (2024) - [i77]Avinash Kori, Francesco Locatello, Ainkaran Santhirasekaram, Francesca Toni, Ben Glocker, Fabio De Sousa Ribeiro:
Identifiable Object-Centric Representation Learning via Probabilistic Slot Attention. CoRR abs/2406.07141 (2024) - [i76]Ke Fan, Zechen Bai, Tianjun Xiao, Tong He, Max Horn, Yanwei Fu, Francesco Locatello, Zheng Zhang:
Adaptive Slot Attention: Object Discovery with Dynamic Slot Number. CoRR abs/2406.09196 (2024) - [i75]Sanketh Vedula, Valentino Maiorca, Lorenzo Basile, Francesco Locatello, Alexander M. Bronstein:
Scalable unsupervised alignment of general metric and non-metric structures. CoRR abs/2406.13507 (2024) - [i74]Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, Emanuele Rodolà:
Latent Functional Maps. CoRR abs/2406.14183 (2024) - [i73]Valentino Maiorca, Luca Moschella, Marco Fumero, Francesco Locatello, Emanuele Rodolà:
Latent Space Translation via Inverse Relative Projection. CoRR abs/2406.15057 (2024) - [i72]Francesco Montagna, Philipp Michael Faller, Patrick Blöbaum, Elke Kirschbaum, Francesco Locatello:
Score matching through the roof: linear, nonlinear, and latent variables causal discovery. CoRR abs/2407.18755 (2024) - [i71]Valentinos Pariza, Mohammadreza Salehi, Gertjan J. Burghouts, Francesco Locatello, Yuki M. Asano:
NeCo: Improving DINOv2's spatial representations in 19 GPU hours with Patch Neighbor Consistency. CoRR abs/2408.11054 (2024) - [i70]Dingling Yao, Dario Rancati, Riccardo Cadei, Marco Fumero, Francesco Locatello:
Unifying Causal Representation Learning with the Invariance Principle. CoRR abs/2409.02772 (2024) - [i69]Berker Demirel, Lingjing Kong, Kun Zhang, Theofanis Karaletsos, Celestine Mendler-Dünner, Francesco Locatello:
Adjusting Pretrained Backbones for Performativity. CoRR abs/2410.04499 (2024) - [i68]Berker Demirel, Marco Fumero, Francesco Locatello:
Look Around and Find Out: OOD Detection with Relative Angles. CoRR abs/2410.04525 (2024) - [i67]Jiale Chen, Dingling Yao, Adeel Pervez, Dan Alistarh, Francesco Locatello:
Scalable Mechanistic Neural Networks. CoRR abs/2410.06074 (2024) - [i66]Tianyu Chen, Kevin Bello, Francesco Locatello, Bryon Aragam, Pradeep Ravikumar:
Identifying General Mechanism Shifts in Linear Causal Representations. CoRR abs/2410.24059 (2024) - [i65]Lorenzo Basile, Valentino Maiorca, Luca Bortolussi, Emanuele Rodolà, Francesco Locatello:
ResiDual Transformer Alignment with Spectral Decomposition. CoRR abs/2411.00246 (2024) - 2023
- [j4]Max F. Burg, Florian Wenzel, Dominik Zietlow, Max Horn, Osama Makansi, Francesco Locatello, Chris Russell:
Image retrieval outperforms diffusion models on data augmentation. Trans. Mach. Learn. Res. 2023 (2023) - [c56]Matthias Tangemann, Steffen Schneider, Julius von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Thomas Brox, Matthias Kümmerer, Matthias Bethge, Bernhard Schölkopf:
Unsupervised Object Learning via Common Fate. CLeaR 2023: 281-327 - [c55]Yuejiang Liu, Alexandre Alahi, Chris Russell, Max Horn, Dominik Zietlow, Bernhard Schölkopf, Francesco Locatello:
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning. CLeaR 2023: 553-573 - [c54]Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, Francesco Locatello:
Causal Discovery with Score Matching on Additive Models with Arbitrary Noise. CLeaR 2023: 726-751 - [c53]Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, Francesco Locatello:
Scalable Causal Discovery with Score Matching. CLeaR 2023: 752-771 - [c52]Ke Fan, Zechen Bai, Tianjun Xiao, Dominik Zietlow, Max Horn, Zixu Zhao, Carl-Johann Simon-Gabriel, Mike Zheng Shou, Francesco Locatello, Bernt Schiele, Thomas Brox, Zheng Zhang, Yanwei Fu, Tong He:
Unsupervised Open-Vocabulary Object Localization in Videos. ICCV 2023: 13701-13709 - [c51]Zixu Zhao, Jiaze Wang, Max Horn, Yizhuo Ding, Tong He, Zechen Bai, Dominik Zietlow, Carl-Johann Simon-Gabriel, Bing Shuai, Zhuowen Tu, Thomas Brox, Bernt Schiele, Yanwei Fu, Francesco Locatello, Zheng Zhang, Tianjun Xiao:
Object-Centric Multiple Object Tracking. ICCV 2023: 16555-16565 - [c50]Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, Emanuele Rodolà:
Relative representations enable zero-shot latent space communication. ICLR 2023 - [c49]Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, Francesco Locatello:
Bridging the Gap to Real-World Object-Centric Learning. ICLR 2023 - [c48]Andrii Zadaianchuk, Matthäus Kleindessner, Yi Zhu, Francesco Locatello, Thomas Brox:
Unsupervised Semantic Segmentation with Self-supervised Object-centric Representations. ICLR 2023 - [c47]Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, Francesco Locatello, Volkan Cevher:
Benign Overfitting in Deep Neural Networks under Lazy Training. ICML 2023: 43105-43128 - [c46]Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolà, Stefano Soatto, Bernhard Schölkopf, Francesco Locatello:
Leveraging sparse and shared feature activations for disentangled representation learning. NeurIPS 2023 - [c45]Sindy Löwe, Phillip Lippe, Francesco Locatello, Max Welling:
Rotating Features for Object Discovery. NeurIPS 2023 - [c44]Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco Fumero, Francesco Locatello, Emanuele Rodolà:
Latent Space Translation via Semantic Alignment. NeurIPS 2023 - [c43]Francesco Montagna, Atalanti-Anastasia Mastakouri, Elias Eulig, Nicoletta Noceti, Lorenzo Rosasco, Dominik Janzing, Bryon Aragam, Francesco Locatello:
Assumption violations in causal discovery and the robustness of score matching. NeurIPS 2023 - [c42]Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodolà, Francesco Locatello:
ASIF: Coupled Data Turns Unimodal Models to Multimodal without Training. NeurIPS 2023 - [c41]Zhenyu Zhu, Francesco Locatello, Volkan Cevher:
Sample Complexity Bounds for Score-Matching: Causal Discovery and Generative Modeling. NeurIPS 2023 - [c40]Marco Fumero, Emanuele Rodolà, Clémentine Dominé, Francesco Locatello, Karolina Dziugaite, Mathilde Caron:
Preface of UniReps: the First Workshop on Unifying Representations in Neural Models. UniReps 2023: 1-10 - [c39]Samarth Sinha, Peter V. Gehler, Francesco Locatello, Bernt Schiele
:
TeST: Test-time Self-Training under Distribution Shift. WACV 2023: 2758-2768 - [e1]Marco Fumero, Emanuele Rodolà, Clémentine Dominé, Francesco Locatello, Karolina Dziugaite, Mathilde Caron:
Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models, 15 December 2023, Ernest N. Morial Convention Center, New Orleans, USA. Proceedings of Machine Learning Research 243, PMLR 2023 [contents] - [i64]Yuejiang Liu, Alexandre Alahi, Chris Russell
, Max Horn, Dominik Zietlow, Bernhard Schölkopf, Francesco Locatello:
Causal Triplet: An Open Challenge for Intervention-centric Causal Representation Learning. CoRR abs/2301.05169 (2023) - [i63]Dong Lao, Zhengyang Hu, Francesco Locatello, Yanchao Yang, Stefano Soatto:
Divided Attention: Unsupervised Multi-Object Discovery with Contextually Separated Slots. CoRR abs/2304.01430 (2023) - [i62]Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, Francesco Locatello:
Causal Discovery with Score Matching on Additive Models with Arbitrary Noise. CoRR abs/2304.03265 (2023) - [i61]Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, Francesco Locatello:
Scalable Causal Discovery with Score Matching. CoRR abs/2304.03382 (2023) - [i60]Marco Fumero, Florian Wenzel, Luca Zancato, Alessandro Achille, Emanuele Rodolà, Stefano Soatto, Bernhard Schölkopf, Francesco Locatello:
Leveraging sparse and shared feature activations for disentangled representation learning. CoRR abs/2304.07939 (2023) - [i59]Max F. Burg, Florian Wenzel, Dominik Zietlow, Max Horn, Osama Makansi, Francesco Locatello, Chris Russell
:
A data augmentation perspective on diffusion models and retrieval. CoRR abs/2304.10253 (2023) - [i58]Zhenyu Zhu, Fanghui Liu, Grigorios G. Chrysos, Francesco Locatello, Volkan Cevher
:
Benign Overfitting in Deep Neural Networks under Lazy Training. CoRR abs/2305.19377 (2023) - [i57]Sindy Löwe, Phillip Lippe
, Francesco Locatello, Max Welling:
Rotating Features for Object Discovery. CoRR abs/2306.00600 (2023) - [i56]Avinash Kori, Francesco Locatello, Francesca Toni, Ben Glocker:
Unsupervised Conditional Slot Attention for Object Centric Learning. CoRR abs/2307.09437 (2023) - [i55]Philipp Michael Faller, Leena Chennuru Vankadara, Atalanti-Anastasia Mastakouri, Francesco Locatello, Dominik Janzing:
Self-Compatibility: Evaluating Causal Discovery without Ground Truth. CoRR abs/2307.09552 (2023) - [i54]Zixu Zhao, Jiaze Wang, Max Horn, Yizhuo Ding, Tong He, Zechen Bai, Dominik Zietlow, Carl-Johann Simon-Gabriel, Bing Shuai, Zhuowen Tu, Thomas Brox, Bernt Schiele, Yanwei Fu
, Francesco Locatello, Zheng Zhang, Tianjun Xiao:
Object-Centric Multiple Object Tracking. CoRR abs/2309.00233 (2023) - [i53]Ke Fan, Zechen Bai, Tianjun Xiao, Dominik Zietlow, Max Horn, Zixu Zhao, Carl-Johann Simon-Gabriel, Mike Zheng Shou, Francesco Locatello, Bernt Schiele, Thomas Brox, Zheng Zhang, Yanwei Fu
, Tong He:
Unsupervised Open-Vocabulary Object Localization in Videos. CoRR abs/2309.09858 (2023) - [i52]Francesco Montagna, Atalanti-Anastasia Mastakouri, Elias Eulig, Nicoletta Noceti, Lorenzo Rosasco, Dominik Janzing, Bryon Aragam, Francesco Locatello:
Assumption violations in causal discovery and the robustness of score matching. CoRR abs/2310.13387 (2023) - [i51]Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Francesco Locatello:
Shortcuts for causal discovery of nonlinear models by score matching. CoRR abs/2310.14246 (2023) - [i50]Zhenyu Zhu, Francesco Locatello, Volkan Cevher:
Sample Complexity Bounds for Score-Matching: Causal Discovery and Generative Modeling. CoRR abs/2310.18123 (2023) - [i49]Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco Fumero, Francesco Locatello, Emanuele Rodolà:
Latent Space Translation via Semantic Alignment. CoRR abs/2311.00664 (2023) - [i48]Dingling Yao, Danru Xu, Sébastien Lachapelle, Sara Magliacane, Perouz Taslakian, Georg Martius, Julius von Kügelgen, Francesco Locatello:
Multi-View Causal Representation Learning with Partial Observability. CoRR abs/2311.04056 (2023) - 2022
- [c38]Gideon Dresdner, Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan Cevher
, Alp Yurtsever:
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization. AISTATS 2022: 8439-8457 - [c37]Dominik Zietlow, Michael Lohaus, Guha Balakrishnan, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Chris Russell
:
Leveling Down in Computer Vision: Pareto Inefficiencies in Fair Deep Classifiers. CVPR 2022: 10400-10411 - [c36]Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter Vincent Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf:
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction. ICLR 2022 - [c35]Lukas Schott, Julius von Kügelgen, Frederik Träuble, Peter Vincent Gehler, Chris Russell, Matthias Bethge, Bernhard Schölkopf, Francesco Locatello, Wieland Brendel:
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain. ICLR 2022 - [c34]Frederik Träuble, Andrea Dittadi, Manuel Wuthrich, Felix Widmaier, Peter Vincent Gehler, Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer:
The Role of Pretrained Representations for the OOD Generalization of RL Agents. ICLR 2022 - [c33]Andrea Dittadi, Samuele S. Papa
, Michele De Vita, Bernhard Schölkopf, Ole Winther, Francesco Locatello:
Generalization and Robustness Implications in Object-Centric Learning. ICML 2022: 5221-5285 - [c32]Paul Rolland, Volkan Cevher
, Matthäus Kleindessner, Chris Russell, Dominik Janzing, Bernhard Schölkopf, Francesco Locatello:
Score Matching Enables Causal Discovery of Nonlinear Additive Noise Models. ICML 2022: 18741-18753 - [c31]Michael Lohaus, Matthäus Kleindessner, Krishnaram Kenthapadi, Francesco Locatello, Chris Russell:
Are Two Heads the Same as One? Identifying Disparate Treatment in Fair Neural Networks. NeurIPS 2022 - [c30]Martin Weiss, Nasim Rahaman, Francesco Locatello, Chris Pal, Yoshua Bengio, Bernhard Schölkopf, Li Erran Li, Nicolas Ballas:
Neural Attentive Circuits. NeurIPS 2022 - [c29]Florian Wenzel, Andrea Dittadi, Peter V. Gehler, Carl-Johann Simon-Gabriel, Max Horn, Dominik Zietlow, David Kernert, Chris Russell, Thomas Brox, Bernt Schiele, Bernhard Schölkopf, Francesco Locatello:
Assaying Out-Of-Distribution Generalization in Transfer Learning. NeurIPS 2022 - [c28]Jian Yao, Yuxin Hong, Chiyu Wang, Tianjun Xiao, Tong He, Francesco Locatello, David P. Wipf, Yanwei Fu, Zheng Zhang:
Self-supervised Amodal Video Object Segmentation. NeurIPS 2022 - [i47]Davide Mambelli, Frederik Träuble, Stefan Bauer, Bernhard Schölkopf, Francesco Locatello:
Compositional Multi-Object Reinforcement Learning with Linear Relation Networks. CoRR abs/2201.13388 (2022) - [i46]Gideon Dresdner, Maria-Luiza Vladarean, Gunnar Rätsch, Francesco Locatello, Volkan Cevher, Alp Yurtsever:
Faster One-Sample Stochastic Conditional Gradient Method for Composite Convex Minimization. CoRR abs/2202.13212 (2022) - [i45]Paul Rolland, Volkan Cevher, Matthäus Kleindessner, Chris Russell, Bernhard Schölkopf, Dominik Janzing, Francesco Locatello:
Score matching enables causal discovery of nonlinear additive noise models. CoRR abs/2203.04413 (2022) - [i44]Dominik Zietlow, Michael Lohaus, Guha Balakrishnan
, Matthäus Kleindessner, Francesco Locatello
, Bernhard Schölkopf, Chris Russell:
Leveling Down in Computer Vision: Pareto Inefficiencies in Fair Deep Classifiers. CoRR abs/2203.04913 (2022) - [i43]Michael Lohaus, Matthäus Kleindessner, Krishnaram Kenthapadi, Francesco Locatello, Chris Russell
:
Are Two Heads the Same as One? Identifying Disparate Treatment in Fair Neural Networks. CoRR abs/2204.04440 (2022) - [i42]Andrii Zadaianchuk, Matthäus Kleindessner, Yi Zhu, Francesco Locatello, Thomas Brox:
Unsupervised Semantic Segmentation with Self-supervised Object-centric Representations. CoRR abs/2207.05027 (2022) - [i41]Florian Wenzel, Andrea Dittadi, Peter Vincent Gehler, Carl-Johann Simon-Gabriel, Max Horn, Dominik Zietlow, David Kernert, Chris Russell
, Thomas Brox, Bernt Schiele
, Bernhard Schölkopf, Francesco Locatello:
Assaying Out-Of-Distribution Generalization in Transfer Learning. CoRR abs/2207.09239 (2022) - [i40]Samarth Sinha, Peter V. Gehler, Francesco Locatello, Bernt Schiele
:
TeST: Test-time Self-Training under Distribution Shift. CoRR abs/2209.11459 (2022) - [i39]Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, Francesco Locatello:
Bridging the Gap to Real-World Object-Centric Learning. CoRR abs/2209.14860 (2022) - [i38]Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, Emanuele Rodolà:
Relative representations enable zero-shot latent space communication. CoRR abs/2209.15430 (2022) - [i37]Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodolà, Francesco Locatello:
ASIF: Coupled Data Turns Unimodal Models to Multimodal Without Training. CoRR abs/2210.01738 (2022) - [i36]Nasim Rahaman, Martin Weiss, Francesco Locatello, Chris Pal, Yoshua Bengio, Bernhard Schölkopf, Li Erran Li, Nicolas Ballas:
Neural Attentive Circuits. CoRR abs/2210.08031 (2022) - [i35]Jian Yao, Yuxin Hong, Chiyu Wang, Tianjun Xiao, Tong He, Francesco Locatello, David Wipf, Yanwei Fu
, Zheng Zhang:
Self-supervised Amodal Video Object Segmentation. CoRR abs/2210.12733 (2022) - [i34]Nasim Rahaman, Martin Weiss, Frederik Träuble, Francesco Locatello, Alexandre Lacoste, Yoshua Bengio, Chris Pal, Li Erran Li, Bernhard Schölkopf:
A General Purpose Neural Architecture for Geospatial Systems. CoRR abs/2211.02348 (2022) - 2021
- [j3]Bernhard Schölkopf
, Francesco Locatello
, Stefan Bauer
, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, Yoshua Bengio
:
Toward Causal Representation Learning. Proc. IEEE 109(5): 612-634 (2021) - [c27]Andrea Dittadi, Frederik Träuble, Francesco Locatello, Manuel Wuthrich, Vaibhav Agrawal, Ole Winther, Stefan Bauer, Bernhard Schölkopf:
On the Transfer of Disentangled Representations in Realistic Settings. ICLR 2021 - [c26]Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh Goyal, Bernhard Schölkopf, Stefan Bauer:
On Disentangled Representations Learned from Correlated Data. ICML 2021: 10401-10412 - [c25]Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, Gunnar Rätsch:
Neighborhood Contrastive Learning Applied to Online Patient Monitoring. ICML 2021: 11964-11974 - [c24]Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch:
Boosting Variational Inference With Locally Adaptive Step-Sizes. IJCAI 2021: 2337-2343 - [c23]Frederik Träuble, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Peter V. Gehler:
Backward-Compatible Prediction Updates: A Probabilistic Approach. NeurIPS 2021: 116-128 - [c22]Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter V. Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf:
Dynamic Inference with Neural Interpreters. NeurIPS 2021: 10985-10998 - [c21]Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, Francesco Locatello:
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style. NeurIPS 2021: 16451-16467 - [i33]Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, Yoshua Bengio:
Towards Causal Representation Learning. CoRR abs/2102.11107 (2021) - [i32]Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch:
Boosting Variational Inference With Locally Adaptive Step-Sizes. CoRR abs/2105.09240 (2021) - [i31]Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, Francesco Locatello:
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style. CoRR abs/2106.04619 (2021) - [i30]Hugo Yèche, Gideon Dresdner, Francesco Locatello, Matthias Hüser, Gunnar Rätsch:
Neighborhood Contrastive Learning Applied to Online Patient Monitoring. CoRR abs/2106.05142 (2021) - [i29]Andrea Dittadi, Samuele Papa, Michele De Vita, Bernhard Schölkopf, Ole Winther, Francesco Locatello:
Generalization and Robustness Implications in Object-Centric Learning. CoRR abs/2107.00637 (2021) - [i28]Frederik Träuble, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, Peter V. Gehler:
Backward-Compatible Prediction Updates: A Probabilistic Approach. CoRR abs/2107.01057 (2021) - [i27]Andrea Dittadi, Frederik Träuble, Manuel Wüthrich, Felix Widmaier, Peter V. Gehler, Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer:
Representation Learning for Out-Of-Distribution Generalization in Reinforcement Learning. CoRR abs/2107.05686 (2021) - [i26]Lukas Schott, Julius von Kügelgen, Frederik Träuble, Peter V. Gehler, Chris Russell, Matthias Bethge, Bernhard Schölkopf, Francesco Locatello, Wieland Brendel:
Visual Representation Learning Does Not Generalize Strongly Within the Same Domain. CoRR abs/2107.08221 (2021) - [i25]Osama Makansi, Julius von Kügelgen, Francesco Locatello, Peter V. Gehler, Dominik Janzing, Thomas Brox, Bernhard Schölkopf:
You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction. CoRR abs/2110.05304 (2021) - [i24]Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter V. Gehler, Yoshua Bengio, Francesco Locatello, Bernhard Schölkopf:
Dynamic Inference with Neural Interpreters. CoRR abs/2110.06399 (2021) - [i23]Matthias Tangemann
, Steffen Schneider, Julius von Kügelgen, Francesco Locatello, Peter V. Gehler, Thomas Brox, Matthias Kümmerer, Matthias Bethge, Bernhard Schölkopf:
Unsupervised Object Learning via Common Fate. CoRR abs/2110.06562 (2021) - [i22]Francesco Locatello:
Enforcing and Discovering Structure in Machine Learning. CoRR abs/2111.13693 (2021) - 2020
- [b1]Francesco Locatello:
Enforcing and Discovering Structure in Machine Learning. ETH Zurich, Zürich, Switzerland, 2020 - [j2]Stefan G. Stark, Joanna Ficek, Francesco Locatello, Ximena Bonilla, Stéphane Chevrier, Franziska Singer, Tumor Profiler Consortium, Gunnar Rätsch, Kjong-Van Lehmann:
SCIM: universal single-cell matching with unpaired feature sets. Bioinform. 36(Supplement-2): i919-i927 (2020) - [j1]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation. J. Mach. Learn. Res. 21: 209:1-209:62 (2020) - [c20]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Commentary on the Unsupervised Learning of Disentangled Representations. AAAI 2020: 13681-13684 - [c19]Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem:
Disentangling Factors of Variations Using Few Labels. ICLR 2020 - [c18]Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen:
Weakly-Supervised Disentanglement Without Compromises. ICML 2020: 6348-6359 - [c17]Geoffrey Négiar, Gideon Dresdner, Alicia Y. Tsai, Laurent El Ghaoui, Francesco Locatello, Robert Freund, Fabian Pedregosa:
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization. ICML 2020: 7253-7262 - [c16]Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, Thomas Kipf:
Object-Centric Learning with Slot Attention. NeurIPS 2020 - [i21]Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen:
Weakly-Supervised Disentanglement Without Compromises. CoRR abs/2002.02886 (2020) - [i20]Geoffrey Négiar, Gideon Dresdner, Alicia Y. Tsai, Laurent El Ghaoui, Francesco Locatello, Fabian Pedregosa:
Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization. CoRR abs/2002.11860 (2020) - [i19]Frederik Träuble, Elliot Creager, Niki Kilbertus, Anirudh Goyal, Francesco Locatello, Bernhard Schölkopf, Stefan Bauer:
Is Independence all you need? On the Generalization of Representations Learned from Correlated Data. CoRR abs/2006.07886 (2020) - [i18]Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, Thomas Kipf:
Object-Centric Learning with Slot Attention. CoRR abs/2006.15055 (2020) - [i17]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Commentary on the Unsupervised Learning of Disentangled Representations. CoRR abs/2007.14184 (2020) - [i16]Andrea Dittadi, Frederik Träuble, Francesco Locatello, Manuel Wüthrich, Vaibhav Agrawal, Ole Winther, Stefan Bauer, Bernhard Schölkopf:
On the Transfer of Disentangled Representations in Realistic Settings. CoRR abs/2010.14407 (2020) - [i15]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation. CoRR abs/2010.14766 (2020)
2010 – 2019
- 2019
- [c15]Vincent Fortuin
, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch:
SOM-VAE: Interpretable Discrete Representation Learning on Time Series. ICLR (Poster) 2019 - [c14]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. RML@ICLR 2019 - [c13]Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019: 4114-4124 - [c12]Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, Olivier Bachem:
Are Disentangled Representations Helpful for Abstract Visual Reasoning? NeurIPS 2019: 14222-14235 - [c11]Francesco Locatello, Alp Yurtsever, Olivier Fercoq, Volkan Cevher
:
Stochastic Frank-Wolfe for Composite Convex Minimization. NeurIPS 2019: 14246-14256 - [c10]Francesco Locatello, Gabriele Abbati, Thomas Rainforth, Stefan Bauer, Bernhard Schölkopf, Olivier Bachem:
On the Fairness of Disentangled Representations. NeurIPS 2019: 14584-14597 - [c9]Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Locatello, Martin Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer:
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset. NeurIPS 2019: 15714-15725 - [c8]Luigi Gresele, Paul K. Rubenstein, Arash Mehrjou, Francesco Locatello, Bernhard Schölkopf:
The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA. UAI 2019: 217-227 - [i14]Francesco Locatello, Alp Yurtsever, Olivier Fercoq, Volkan Cevher:
Stochastic Conditional Gradient Method for Composite Convex Minimization. CoRR abs/1901.10348 (2019) - [i13]Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem:
Disentangling Factors of Variation Using Few Labels. CoRR abs/1905.01258 (2019) - [i12]Luigi Gresele, Paul K. Rubenstein, Arash Mehrjou, Francesco Locatello, Bernhard Schölkopf:
The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA. CoRR abs/1905.06642 (2019) - [i11]Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, Olivier Bachem:
Are Disentangled Representations Helpful for Abstract Visual Reasoning? CoRR abs/1905.12506 (2019) - [i10]Francesco Locatello, Gabriele Abbati, Tom Rainforth, Stefan Bauer, Bernhard Schölkopf, Olivier Bachem:
On the Fairness of Disentangled Representations. CoRR abs/1905.13662 (2019) - [i9]Muhammad Waleed Gondal, Manuel Wüthrich, Ðorðe Miladinovic, Francesco Locatello, Martin Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard Schölkopf, Stefan Bauer:
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset. CoRR abs/1906.03292 (2019) - 2018
- [c7]Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch:
Boosting Variational Inference: an Optimization Perspective. AISTATS 2018: 464-472 - [c6]Francesco Locatello, Damien Vincent, Ilya O. Tolstikhin, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf:
Clustering Meets Implicit Generative Models. ICLR (Workshop) 2018 - [c5]Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi:
On Matching Pursuit and Coordinate Descent. ICML 2018: 3204-3213 - [c4]Alp Yurtsever, Olivier Fercoq, Francesco Locatello, Volkan Cevher
:
A Conditional Gradient Framework for Composite Convex Minimization with Applications to Semidefinite Programming. ICML 2018: 5713-5722 - [c3]Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera
, Gunnar Rätsch:
Boosting Black Box Variational Inference. NeurIPS 2018: 3405-3415 - [i8]Francesco Locatello, Anant Raj, Sai Praneeth Karimireddy, Gunnar Rätsch, Bernhard Schölkopf, Sebastian U. Stich, Martin Jaggi:
Revisiting First-Order Convex Optimization Over Linear Spaces. CoRR abs/1803.09539 (2018) - [i7]Francesco Locatello, Damien Vincent, Ilya O. Tolstikhin, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf:
Clustering Meets Implicit Generative Models. CoRR abs/1804.11130 (2018) - [i6]Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, Gunnar Rätsch:
Boosting Black Box Variational Inference. CoRR abs/1806.02185 (2018) - [i5]Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, Gunnar Rätsch:
Deep Self-Organization: Interpretable Discrete Representation Learning on Time Series. CoRR abs/1806.02199 (2018) - [i4]Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schölkopf, Olivier Bachem:
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. CoRR abs/1811.12359 (2018) - 2017
- [c2]Francesco Locatello, Rajiv Khanna, Michael Tschannen, Martin Jaggi:
A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe. AISTATS 2017: 860-868 - [c1]Francesco Locatello, Michael Tschannen, Gunnar Rätsch, Martin Jaggi:
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees. NIPS 2017: 773-784 - [i3]Francesco Locatello, Rajiv Khanna, Michael Tschannen, Martin Jaggi:
A Unified Optimization View on Generalized Matching Pursuit and Frank-Wolfe. CoRR abs/1702.06457 (2017) - [i2]Francesco Locatello, Michael Tschannen, Gunnar Rätsch, Martin Jaggi:
Greedy Algorithms for Cone Constrained Optimization with Convergence Guarantees. CoRR abs/1705.11041 (2017) - [i1]Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch:
Boosting Variational Inference: an Optimization Perspective. CoRR abs/1708.01733 (2017)
Coauthor Index
aka: Peter Vincent Gehler

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-02-15 01:24 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint