default search action
José L. López 0001
Person information
- affiliation: Public University of Navarre, Department of Engineering Mathematics and Computer Science, Pamplona, Spain
Other persons with the same name
- José L. López 0002 — Technical University of Madrid, INSIA, Spain
- José L. López 0003 (aka: José Luis López Ruiz) — University of Jaén, Department of Computer Science, Spain
- José Luis López — disambiguation page
- José Luis López 0002 — University of Granada, Department of Mathematics, Spain
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j30]José L. López, Pedro J. Pagola, Pablo Palacios:
A generalization of the Laplace's method for integrals. Appl. Math. Comput. 483: 128987 (2024) - [j29]José L. López, Pedro J. Pagola, Pablo Palacios:
The uniform asymptotic method "saddle point near an end point" revisited. J. Comput. Appl. Math. 443: 115764 (2024) - 2023
- [j28]José L. López, Pedro J. Pagola, Pablo Palacios:
A convergent and asymptotic Laplace method for integrals. J. Comput. Appl. Math. 422: 114897 (2023) - 2021
- [j27]José L. López, Pedro J. Pagola, Pablo Palacios:
Series representations of the Volterra function and the Fransén-Robinson constant. J. Approx. Theory 272: 105641 (2021) - [j26]José L. López, Pablo Palacios, Pedro J. Pagola:
Uniform convergent expansions of integral transforms. Math. Comput. 90(329): 1357-1380 (2021)
2010 – 2019
- 2019
- [j25]Blanca Bujanda, José L. López, Pedro J. Pagola:
Convergent expansions of the confluent hypergeometric functions in terms of elementary functions. Math. Comput. 88(318): 1773-1789 (2019) - 2018
- [j24]José L. López:
Convergent expansions of the Bessel functions in terms of elementary functions. Adv. Comput. Math. 44(1): 277-294 (2018) - [j23]Chelo Ferreira, José L. López, Ester Pérez Sinusía:
The asymptotic expansion of the swallowtail integral in the highly oscillatory region. Appl. Math. Comput. 339: 837-845 (2018) - 2017
- [j22]Dmitry B. Karp, José Luis López:
Representations of hypergeometric functions for arbitrary parameter values and their use. J. Approx. Theory 218: 42-70 (2017) - [j21]José L. López, Pedro J. Pagola:
Analytic formulas for the evaluation of the Pearcey integral. Math. Comput. 86(307): 2399-2407 (2017) - 2016
- [j20]José L. López, Pedro J. Pagola:
The Pearcey integral in the highly oscillatory region. Appl. Math. Comput. 275: 404-410 (2016) - 2015
- [j19]Christian Berg, José Luis López:
Asymptotic behaviour of the Urbanik semigroup. J. Approx. Theory 195: 109-121 (2015) - 2014
- [j18]José L. López, Ester Pérez Sinusía:
New series expansions for the confluent hypergeometric function M(a, b, z). Appl. Math. Comput. 235: 26-31 (2014) - 2013
- [j17]José L. López, Nico M. Temme:
New series expansions of the Gauss hypergeometric function. Adv. Comput. Math. 39(2): 349-365 (2013) - [j16]Chelo Ferreira, José L. López, Ester Pérez Sinusía:
The third Appell function for one large variable. J. Approx. Theory 165(1): 60-69 (2013) - [j15]Esther García, Lance L. Littlejohn, José L. López, Ester Pérez Sinusía:
Factorization of second-order linear differential equations and Liouville-Neumann expansions. Math. Comput. Model. 57(5-6): 1514-1530 (2013) - 2012
- [j14]José L. López, Ester Pérez Sinusía:
Two-point Taylor approximations of the solutions of two-dimensional boundary value problems. Appl. Math. Comput. 218(18): 9107-9115 (2012) - [j13]José L. López, Ester Pérez Sinusía:
The Liouville-Neumann expansion in singular eigenvalue problems. Appl. Math. Lett. 25(1): 72-76 (2012) - 2011
- [j12]José L. López, Pedro J. Pagola:
A family of integrals analytically solvable. Int. J. Comput. Math. 88(13): 2721-2727 (2011) - 2010
- [j11]José L. López, Pedro J. Pagola:
Asymptotic expansions of Mellin convolution integrals: An oscillatory case. J. Comput. Appl. Math. 233(6): 1562-1569 (2010) - [j10]José L. López, Pedro J. Pagola:
The confluent hypergeometric functions M(a, b;z) and U(a, b;z) for large b and z. J. Comput. Appl. Math. 233(6): 1570-1576 (2010) - [j9]José L. López, Ester Pérez Sinusía:
Two-point Taylor expansions and one-dimensional boundary value problems. Math. Comput. 79(272): 2103-2115 (2010) - [j8]José L. López, Nico M. Temme:
Asymptotics and numerics of polynomials used in Tricomi and Buchholz expansions of Kummer functions. Numerische Mathematik 116(2): 269-289 (2010)
2000 – 2009
- 2009
- [j7]José L. López, Ester Pérez Sinusía, Nico M. Temme:
Multi-point Taylor approximations in one-dimensional linear boundary value problems. Appl. Math. Comput. 207(2): 519-527 (2009) - [j6]José L. López, Pedro J. Pagola, Ester Pérez Sinusía:
A simplification of Laplace's method: Applications to the Gamma function and Gauss hypergeometric function. J. Approx. Theory 161(1): 280-291 (2009) - 2008
- [j5]José L. López:
Asymptotic Expansions of Mellin Convolution Integrals. SIAM Rev. 50(2): 275-293 (2008) - 2005
- [j4]Chelo Ferreira, José L. López, Ester Pérez Sinusía:
Incomplete gamma functions for large values of their variables. Adv. Appl. Math. 34(3): 467-485 (2005) - 2003
- [j3]Chelo Ferreira, José L. López, Esmeralda Mainar:
Asymptotic relations in the Askey scheme for hypergeometric orthogonal polynomials. Adv. Appl. Math. 31(1): 61-85 (2003) - 2001
- [j2]Chelo Ferreira, José L. López:
An Asymptotic Expansion of the Double Gamma Function. J. Approx. Theory 111(2): 298-314 (2001) - 2000
- [j1]José L. López:
Asymptotic Expansions of Symmetric Standard Elliptic Integrals. SIAM J. Math. Anal. 31(4): 754-775 (2000)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:34 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint