![](https://dblp.uni-trier.de./img/logo.320x120.png)
![search dblp search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
![search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
default search action
Yongxin Yang
Person information
Refine list
![note](https://dblp.uni-trier.de./img/note-mark.dark.12x12.png)
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j18]Xiaoming Jiang
, Yongxin Yang, Tong Su, Kai Xiao, Lidan Lu, Wei Wang, Changsong Guo, Lizhi Shao, Mingjing Wang, Dong Jiang:
Unsupervised domain adaptation based on feature and edge alignment for femur X-ray image segmentation. Comput. Medical Imaging Graph. 116: 102407 (2024) - [j17]Kaiyang Zhou, Yongxin Yang, Yu Qiao, Tao Xiang:
MixStyle Neural Networks for Domain Generalization and Adaptation. Int. J. Comput. Vis. 132(3): 822-836 (2024) - [j16]Nanqing Dong
, Linus Ericsson
, Yongxin Yang, Ales Leonardis, Steven McDonagh
:
Label-efficient object detection via region proposal network pre-training. Neurocomputing 577: 127376 (2024) - [c75]Yuanyuan Liu, Yongxin Yang:
Leveraging Stochastic Optimization in Asset Allocation for Enhanced Index Tracking. CIFEr 2024: 1-8 - [c74]Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Fei Chen, Steven McDonagh, Gerasimos Lampouras, Ignacio Iacobacci, Sarah Parisot:
MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation. CVPR 2024: 22413-22422 - [c73]Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, Timothy M. Hospedales:
Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models. ICML 2024 - [c72]Wei Dai, Yinghao Yao, Hengte Kong, Zhen Ji Chen, Sheng Wang, Qingshi Bai, Haojun Sun, Yongxin Yang, Jianzhong Su:
RIP-AV: Joint Representative Instance Pre-training with Context Aware Network for Retinal Artery/Vein Segmentation. MICCAI (1) 2024: 764-774 - [i66]Yongshuo Zong, Ondrej Bohdal, Tingyang Yu, Yongxin Yang, Timothy M. Hospedales:
Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models. CoRR abs/2402.02207 (2024) - [i65]Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Fei Chen, Steven McDonagh, Gerasimos Lampouras, Ignacio Iacobacci, Sarah Parisot:
MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation. CoRR abs/2404.02790 (2024) - [i64]Alessandro Fontanella, Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Sarah Parisot:
Generating Compositional Scenes via Text-to-image RGBA Instance Generation. CoRR abs/2411.10913 (2024) - 2023
- [j15]Ondrej Bohdal, Yongxin Yang, Timothy M. Hospedales:
Meta-Calibration: Learning of Model Calibration Using Differentiable Expected Calibration Error. Trans. Mach. Learn. Res. 2023 (2023) - [c71]Yongxin Yang, Timothy M. Hospedales:
Partial Index Tracking: A Meta-Learning Approach. CoLLAs 2023: 415-436 - [c70]Sarah Parisot, Yongxin Yang, Steven McDonagh
:
Learning to Name Classes for Vision and Language Models. CVPR 2023: 23477-23486 - [c69]Yongxin Yang
, Timothy M. Hospedales
:
An Evaluation of Self-supervised Learning for Portfolio Diversification. ICANN (3) 2023: 283-294 - [c68]Xiongjie Chen, Yunpeng Li, Yongxin Yang:
Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution Detection. ICASSP 2023: 1-5 - [c67]Ayan Das, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
ChiroDiff: Modelling chirographic data with Diffusion Models. ICLR 2023 - [c66]Yongshuo Zong, Yongxin Yang, Timothy M. Hospedales:
MEDFAIR: Benchmarking Fairness for Medical Imaging. ICLR 2023 - [c65]Yongxin Yang
, Timothy M. Hospedales
:
On Calibration of Mathematical Finance Models by Hypernetworks. ECML/PKDD (6) 2023: 227-242 - [c64]Yongxin Yang, Timothy M. Hospedales:
Mixture of Normalizing Flows for European Option Pricing. UAI 2023: 2390-2399 - [i63]Sarah Parisot, Yongxin Yang, Steven McDonagh:
Learning to Name Classes for Vision and Language Models. CoRR abs/2304.01830 (2023) - [i62]Ayan Das, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
ChiroDiff: Modelling chirographic data with Diffusion Models. CoRR abs/2304.03785 (2023) - [i61]Bowen Li, Yongxin Yang, Steven McDonagh, Shifeng Zhang, Petru-Daniel Tudosiu, Sarah Parisot:
Optimisation-Based Multi-Modal Semantic Image Editing. CoRR abs/2311.16882 (2023) - [i60]Kaichen Zhou, Lanqing Hong, Enze Xie, Yongxin Yang, Zhenguo Li, Wei Zhang:
SERF: Fine-Grained Interactive 3D Segmentation and Editing with Radiance Fields. CoRR abs/2312.15856 (2023) - 2022
- [j14]Kaiyang Zhou
, Yongxin Yang, Andrea Cavallaro
, Tao Xiang
:
Learning Generalisable Omni-Scale Representations for Person Re-Identification. IEEE Trans. Pattern Anal. Mach. Intell. 44(9): 5056-5069 (2022) - [j13]Jiansong Li
, Xueying Wang
, Xiaobing Chen, Guangli Li, Xiao Dong
, Peng Zhao
, Xianzhi Yu, Yongxin Yang, Wei Cao
, Lei Liu, Xiaobing Feng:
An Application-oblivious Memory Scheduling System for DNN Accelerators. ACM Trans. Archit. Code Optim. 19(4): 47:1-47:26 (2022) - [c63]Conghui Hu, Yongxin Yang, Yunpeng Li, Timothy M. Hospedales, Yi-Zhe Song:
Towards Unsupervised Sketch-based Image Retrieval. BMVC 2022: 224 - [c62]Sarah Parisot, Pedro M. Esperança, Steven McDonagh
, Tamas J. Madarasz, Yongxin Yang, Zhenguo Li:
Long-tail Recognition via Compositional Knowledge Transfer. CVPR 2022: 6929-6938 - [c61]Ayan Das, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
SketchODE: Learning neural sketch representation in continuous time. ICLR 2022 - [c60]Xiongjie Chen, Yongxin Yang, Yunpeng Li:
Augmented Sliced Wasserstein Distances. ICLR 2022 - [c59]Boyan Gao, Henry Gouk, Yongxin Yang, Timothy M. Hospedales:
Loss Function Learning for Domain Generalization by Implicit Gradient. ICML 2022: 7002-7016 - [c58]Nanqing Dong, Matteo Maggioni, Yongxin Yang, Eduardo Pérez-Pellitero, Ales Leonardis, Steven McDonagh:
Residual Contrastive Learning for Image Reconstruction: Learning Transferable Representations from Noisy Images. IJCAI 2022: 2930-2936 - [c57]Qishi Dong, Muhammad Awais, Fengwei Zhou, Chuanlong Xie, Tianyang Hu, Yongxin Yang, Sung-Ho Bae, Zhenguo Li:
ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization. NeurIPS 2022 - [i59]Xiongjie Chen, Yunpeng Li
, Yongxin Yang:
Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution Detection. CoRR abs/2206.12911 (2022) - [i58]Ling Luo, Yulia Gryaditskaya
, Yongxin Yang, Tao Xiang, Yi-Zhe Song:
Fine-Grained VR Sketching: Dataset and Insights. CoRR abs/2209.10008 (2022) - [i57]Ling Luo, Yulia Gryaditskaya
, Yongxin Yang, Tao Xiang, Yi-Zhe Song:
Towards 3D VR-Sketch to 3D Shape Retrieval. CoRR abs/2209.10020 (2022) - [i56]Yongshuo Zong, Yongxin Yang, Timothy M. Hospedales:
MEDFAIR: Benchmarking Fairness for Medical Imaging. CoRR abs/2210.01725 (2022) - [i55]Qishi Dong, Muhammad Awais, Fengwei Zhou, Chuanlong Xie, Tianyang Hu, Yongxin Yang, Sung-Ho Bae, Zhenguo Li:
ZooD: Exploiting Model Zoo for Out-of-Distribution Generalization. CoRR abs/2210.09236 (2022) - [i54]Linus Ericsson
, Nanqing Dong, Yongxin Yang, Ales Leonardis, Steven McDonagh
:
Region Proposal Network Pre-Training Helps Label-Efficient Object Detection. CoRR abs/2211.09022 (2022) - 2021
- [j12]Ju Wei, Yongxin Yang, Mingzhu Jiang, Jianguo Liu
:
Dynamic multi-period sparse portfolio selection model with asymmetric investors' sentiments. Expert Syst. Appl. 177: 114945 (2021) - [j11]Kaiyang Zhou
, Yongxin Yang, Yu Qiao
, Tao Xiang
:
Domain Adaptive Ensemble Learning. IEEE Trans. Image Process. 30: 8008-8018 (2021) - [j10]Anran Qi
, Yulia Gryaditskaya
, Jifei Song, Yongxin Yang, Yonggang Qi
, Timothy M. Hospedales
, Tao Xiang
, Yi-Zhe Song
:
Toward Fine-Grained Sketch-Based 3D Shape Retrieval. IEEE Trans. Image Process. 30: 8595-8606 (2021) - [j9]Jianshu Zhang
, Jun Du
, Yongxin Yang, Yi-Zhe Song
, Lirong Dai:
SRD: A Tree Structure Based Decoder for Online Handwritten Mathematical Expression Recognition. IEEE Trans. Multim. 23: 2471-2480 (2021) - [c56]Ling Luo, Yulia Gryaditskaya
, Yongxin Yang, Tao Xiang, Yi-Zhe Song
:
Fine-Grained VR Sketching: Dataset and Insights. 3DV 2021: 1003-1013 - [c55]Tianyuan Yu, Yongxin Yang, Da Li, Timothy M. Hospedales, Tao Xiang:
Simple and Effective Stochastic Neural Networks. AAAI 2021: 3252-3260 - [c54]Zhongying Deng, Kaiyang Zhou, Yongxin Yang, Tao Xiang:
Domain Attention Consistency for Multi-Source Domain Adaptation. BMVC 2021: 4 - [c53]Yuting Qiang, Yongxin Yang, Xueting Zhang, Yanwen Guo, Timothy M. Hospedales:
Tensor Composition Net for Visual Relationship Prediction. BMVC 2021: 434 - [c52]Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Aneeshan Sain
, Yongxin Yang, Tao Xiang, Yi-Zhe Song:
More Photos Are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval. CVPR 2021: 4247-4256 - [c51]Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song
:
Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting. CVPR 2021: 5672-5681 - [c50]Ayan Das, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
Cloud2Curve: Generation and Vectorization of Parametric Sketches. CVPR 2021: 7088-7097 - [c49]Aneeshan Sain
, Ayan Kumar Bhunia, Yongxin Yang, Tao Xiang, Yi-Zhe Song
:
StyleMeUp: Towards Style-Agnostic Sketch-Based Image Retrieval. CVPR 2021: 8504-8513 - [c48]Sen He, Wentong Liao, Michael Ying Yang
, Yongxin Yang, Yi-Zhe Song
, Bodo Rosenhahn, Tao Xiang:
Context-Aware Layout to Image Generation With Enhanced Object Appearance. CVPR 2021: 15049-15058 - [c47]Hao Yang
, Min Wang
, Yun Zhou, Yongxin Yang:
Towards Stochastic Neural Network via Feature Distribution Calibration. ICDM 2021: 1445-1450 - [c46]Kaiyang Zhou, Yongxin Yang, Yu Qiao, Tao Xiang:
Domain Generalization with MixStyle. ICLR 2021 - [c45]Jiansong Li
, Xiao Dong, Guangli Li, Peng Zhao, Xueying Wang
, Xiaobing Chen, Xianzhi Yu, Yongxin Yang, Zihan Jiang, Wei Cao, Lei Liu, Xiaobing Feng:
Pinpointing the Memory Behaviors of DNN Training. ISPASS 2021: 217-219 - [c44]Yu Zheng
, Yongxin Yang, Bowei Chen
:
Incorporating Prior Financial Domain Knowledge into Neural Networks for Implied Volatility Surface Prediction. KDD 2021: 3968-3975 - [c43]Ondrej Bohdal, Yongxin Yang, Timothy M. Hospedales:
EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter Optimization. NeurIPS 2021: 22234-22246 - [i53]Sen He, Wentong Liao, Michael Ying Yang, Yongxin Yang, Yi-Zhe Song, Bodo Rosenhahn, Tao Xiang:
Context-Aware Layout to Image Generation with Enhanced Object Appearance. CoRR abs/2103.11897 (2021) - [i52]Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting. CoRR abs/2103.13716 (2021) - [i51]Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Aneeshan Sain
, Yongxin Yang, Tao Xiang, Yi-Zhe Song:
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval. CoRR abs/2103.13990 (2021) - [i50]Ayan Das, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
Cloud2Curve: Generation and Vectorization of Parametric Sketches. CoRR abs/2103.15536 (2021) - [i49]Aneeshan Sain
, Ayan Kumar Bhunia, Yongxin Yang, Tao Xiang, Yi-Zhe Song:
StyleMeUp: Towards Style-Agnostic Sketch-Based Image Retrieval. CoRR abs/2103.15706 (2021) - [i48]Jiansong Li, Xiao Dong, Guangli Li, Peng Zhao, Xueying Wang, Xiaobing Chen, Xianzhi Yu, Yongxin Yang, Zihan Jiang, Wei Cao, Lei Liu, Xiaobing Feng:
Pinpointing the Memory Behaviors of DNN Training. CoRR abs/2104.00258 (2021) - [i47]Kaiyang Zhou, Yongxin Yang, Yu Qiao, Tao Xiang:
Domain Generalization with MixStyle. CoRR abs/2104.02008 (2021) - [i46]Conghui Hu, Yongxin Yang, Yunpeng Li, Timothy M. Hospedales, Yi-Zhe Song:
Towards Unsupervised Sketch-based Image Retrieval. CoRR abs/2105.08237 (2021) - [i45]Ondrej Bohdal, Yongxin Yang, Timothy M. Hospedales:
Meta-Calibration: Meta-Learning of Model Calibration Using Differentiable Expected Calibration Error. CoRR abs/2106.09613 (2021) - [i44]Nanqing Dong, Matteo Maggioni, Yongxin Yang, Eduardo Pérez-Pellitero, Ales Leonardis, Steven McDonagh:
Residual Contrastive Learning for Joint Demosaicking and Denoising. CoRR abs/2106.10070 (2021) - [i43]Ondrej Bohdal, Yongxin Yang, Timothy M. Hospedales:
EvoGrad: Efficient Gradient-Based Meta-Learning and Hyperparameter Optimization. CoRR abs/2106.10575 (2021) - [i42]Kaiyang Zhou, Yongxin Yang, Yu Qiao, Tao Xiang:
MixStyle Neural Networks for Domain Generalization and Adaptation. CoRR abs/2107.02053 (2021) - [i41]Zhongying Deng, Kaiyang Zhou, Yongxin Yang, Tao Xiang:
Domain Attention Consistency for Multi-Source Domain Adaptation. CoRR abs/2111.03911 (2021) - [i40]Sarah Parisot, Pedro M. Esperança, Steven McDonagh, Tamas J. Madarasz, Yongxin Yang, Zhenguo Li:
Long-tail Recognition via Compositional Knowledge Transfer. CoRR abs/2112.06741 (2021) - 2020
- [j8]Conghui Hu
, Da Li, Yongxin Yang, Timothy M. Hospedales
, Yi-Zhe Song
:
Sketch-a-Segmenter: Sketch-Based Photo Segmenter Generation. IEEE Trans. Image Process. 29: 9470-9481 (2020) - [j7]Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya
, Yi-Zhe Song
:
Pixelor: a competitive sketching AI agent. so you think you can sketch? ACM Trans. Graph. 39(6): 166:1-166:15 (2020) - [c42]Ling Luo, Yulia Gryaditskaya
, Yongxin Yang, Tao Xiang, Yi-Zhe Song
:
Towards 3D VR-Sketch to 3D Shape Retrieval. 3DV 2020: 81-90 - [c41]Yu Zheng
, Bowei Chen, Timothy M. Hospedales, Yongxin Yang:
Index Tracking with Cardinality Constraints: A Stochastic Neural Networks Approach. AAAI 2020: 1242-1249 - [c40]Kaiyang Zhou, Yongxin Yang, Timothy M. Hospedales, Tao Xiang:
Deep Domain-Adversarial Image Generation for Domain Generalisation. AAAI 2020: 13025-13032 - [c39]Aneeshan Sain, Ayan Kumar Bhunia, Yongxin Yang, Tao Xiang, Yi-Zhe Song:
Cross-Modal Hierarchical Modelling for Fine-Grained Sketch Based Image Retrieval. BMVC 2020 - [c38]Zhihe Lu, Yongxin Yang, Xiatian Zhu, Cong Liu, Yi-Zhe Song
, Tao Xiang:
Stochastic Classifiers for Unsupervised Domain Adaptation. CVPR 2020: 9108-9117 - [c37]Ayan Kumar Bhunia, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song
:
Sketch Less for More: On-the-Fly Fine-Grained Sketch-Based Image Retrieval. CVPR 2020: 9776-9785 - [c36]Kaiyue Pang, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song
:
Solving Mixed-Modal Jigsaw Puzzle for Fine-Grained Sketch-Based Image Retrieval. CVPR 2020: 10344-10352 - [c35]Xiao Gong, Guosheng Hu, Timothy M. Hospedales, Yongxin Yang:
Adversarial Robustness of Open-Set Recognition: Face Recognition and Person Re-identification. ECCV Workshops (1) 2020: 135-151 - [c34]Kaiyang Zhou, Yongxin Yang, Timothy M. Hospedales, Tao Xiang:
Learning to Generate Novel Domains for Domain Generalization. ECCV (16) 2020: 561-578 - [c33]Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy M. Hospedales, Neil Martin Robertson, Yongxin Yang:
Differentiable Automatic Data Augmentation. ECCV (22) 2020: 580-595 - [c32]Da Li
, Yongxin Yang
, Yi-Zhe Song
, Timothy M. Hospedales
:
Sequential Learning for Domain Generalization. ECCV Workshops (1) 2020: 603-619 - [c31]Ayan Das, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song
:
BézierSketch: A Generative Model for Scalable Vector Sketches. ECCV (26) 2020: 632-647 - [c30]Yu Zheng, Yunpeng Li, Qiuhua Xu, Timothy M. Hospedales, Yongxin Yang:
Index tracking with differentiate asset selection. ICAIF 2020: 12:1-12:8 - [c29]Yu Zheng
, Timothy M. Hospedales, Yongxin Yang:
Diversity and Sparsity: A New Perspective on Index Tracking. ICASSP 2020: 1768-1772 - [c28]Boyan Gao, Yongxin Yang, Henry Gouk, Timothy M. Hospedales:
Deep Clustering for Domain Adaptation. ICASSP 2020: 4247-4251 - [c27]Boyan Gao, Yongxin Yang, Henry Gouk, Timothy M. Hospedales:
Deep Clusteringwith Concrete K-Means. ICASSP 2020: 4252-4256 - [c26]Jianshu Zhang, Jun Du, Yongxin Yang, Yi-Zhe Song, Si Wei, Lirong Dai:
A Tree-Structured Decoder for Image-to-Markup Generation. ICML 2020: 11076-11085 - [c25]Xueting Zhang, Yuting Qiang, Flood Sung, Yongxin Yang, Timothy M. Hospedales:
RelationNet2: Deep Comparison Network for Few-Shot Learning. IJCNN 2020: 1-8 - [c24]Wei Zhou, Yiying Li, Yongxin Yang, Huaimin Wang, Timothy M. Hospedales:
Online Meta-Critic Learning for Off-Policy Actor-Critic Methods. NeurIPS 2020 - [i39]Ayan Kumar Bhunia, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
Sketch Less for More: On-the-Fly Fine-Grained Sketch Based Image Retrieval. CoRR abs/2002.10310 (2020) - [i38]Wei Zhou, Yiying Li, Yongxin Yang, Huaimin Wang, Timothy M. Hospedales:
Online Meta-Critic Learning for Off-Policy Actor-Critic Methods. CoRR abs/2003.05334 (2020) - [i37]Kaiyang Zhou, Yongxin Yang, Timothy M. Hospedales, Tao Xiang:
Deep Domain-Adversarial Image Generation for Domain Generalisation. CoRR abs/2003.06054 (2020) - [i36]Kaiyang Zhou, Yongxin Yang, Yu Qiao, Tao Xiang:
Domain Adaptive Ensemble Learning. CoRR abs/2003.07325 (2020) - [i35]Da Li, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales:
Sequential Learning for Domain Generalization. CoRR abs/2004.01377 (2020) - [i34]Ondrej Bohdal, Yongxin Yang, Timothy M. Hospedales:
Flexible Dataset Distillation: Learn Labels Instead of Images. CoRR abs/2006.08572 (2020) - [i33]Xiongjie Chen, Yongxin Yang, Yunpeng Li:
Augmented Sliced Wasserstein Distances. CoRR abs/2006.08812 (2020) - [i32]Ayan Das, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
BézierSketch: A generative model for scalable vector sketches. CoRR abs/2007.02190 (2020) - [i31]Kaiyang Zhou, Yongxin Yang, Timothy M. Hospedales, Tao Xiang:
Learning to Generate Novel Domains for Domain Generalization. CoRR abs/2007.03304 (2020) - [i30]Aneeshan Sain
, Ayan Kumar Bhunia, Yongxin Yang, Tao Xiang, Yi-Zhe Song:
Cross-Modal Hierarchical Modelling for Fine-Grained Sketch Based Image Retrieval. CoRR abs/2007.15103 (2020) - [i29]Yuting Qiang, Yongxin Yang, Yanwen Guo, Timothy M. Hospedales:
Tensor Composition Net for Visual Relationship Prediction. CoRR abs/2012.05473 (2020)
2010 – 2019
- 2019
- [j6]Xin Zhang, Zhigang Chu
, Yang Yang, Shuyi Zhao, Yongxin Yang:
An Alternative Hybrid Time-Frequency Domain Approach Based on Fast Iterative Shrinkage-Thresholding Algorithm for Rotating Acoustic Source Identification. IEEE Access 7: 59797-59805 (2019) - [j5]Xuemei Sun, Yongxin Yang, Maode Ma:
Minimum Connected Dominating Set Algorithms for Ad Hoc Sensor Networks. Sensors 19(8): 1919 (2019) - [c23]Xiaobin Chang, Yongxin Yang, Tao Xiang, Timothy M. Hospedales:
Disjoint Label Space Transfer Learning with Common Factorised Space. AAAI 2019: 3288-3295 - [c22]Kaiyue Pang, Ke Li, Yongxin Yang, Honggang Zhang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
Generalising Fine-Grained Sketch-Based Image Retrieval. CVPR 2019: 677-686 - [c21]Jifei Song, Yongxin Yang, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales:
Generalizable Person Re-Identification by Domain-Invariant Mapping Network. CVPR 2019: 719-728 - [c20]Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song
:
Goal-Driven Sequential Data Abstraction. ICCV 2019: 71-80 - [c19]Tianyuan Yu, Da Li, Yongxin Yang, Timothy M. Hospedales, Tao Xiang:
Robust Person Re-Identification by Modelling Feature Uncertainty. ICCV 2019: 552-561 - [c18]Da Li
, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song
, Timothy M. Hospedales:
Episodic Training for Domain Generalization. ICCV 2019: 1446-1455 - [c17]Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, Tao Xiang:
Omni-Scale Feature Learning for Person Re-Identification. ICCV 2019: 3701-3711 - [c16]Yiying Li, Yongxin Yang, Wei Zhou, Timothy M. Hospedales:
Feature-Critic Networks for Heterogeneous Domain Generalization. ICML 2019: 3915-3924 - [i28]Yiying Li, Yongxin Yang, Wei Zhou, Timothy M. Hospedales:
Feature-Critic Networks for Heterogeneous Domain Generalization. CoRR abs/1901.11448 (2019) - [i27]Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, Timothy M. Hospedales:
Episodic Training for Domain Generalization. CoRR abs/1902.00113 (2019) - [i26]Yu Zheng, Yongxin Yang, Bowei Chen:
Gated deep neural networks for implied volatility surfaces. CoRR abs/1904.12834 (2019) - [i25]Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, Tao Xiang:
Omni-Scale Feature Learning for Person Re-Identification. CoRR abs/1905.00953 (2019) - [i24]Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yi-Zhe Song:
Goal-Driven Sequential Data Abstraction. CoRR abs/1907.12336 (2019) - [i23]Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, Tao Xiang:
Learning Generalisable Omni-Scale Representations for Person Re-Identification. CoRR abs/1910.06827 (2019) - [i22]Boyan Gao, Yongxin Yang, Henry Gouk, Timothy M. Hospedales:
Deep clustering with concrete k-means. CoRR abs/1910.08031 (2019) - 2018
- [j4]Yongxin Yang, Rui Zhou
, Yaojun Ge, Yanliang Du, Lihai Zhang
:
Sensitivity Analysis of Geometrical Parameters on the Aerodynamic Performance of Closed-Box Girder Bridges. Sensors 18(7): 2053 (2018) - [j3]Guosheng Hu
, Xiaojiang Peng, Yongxin Yang, Timothy M. Hospedales
, Jakob Verbeek:
Frankenstein: Learning Deep Face Representations Using Small Data. IEEE Trans. Image Process. 27(1): 293-303 (2018) - [c15]Da Li, Yongxin Yang, Yi-Zhe Song
, Timothy M. Hospedales:
Learning to Generalize: Meta-Learning for Domain Generalization. AAAI 2018: 3490-3497 - [c14]Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, Timothy M. Hospedales:
Learning to Compare: Relation Network for Few-Shot Learning. CVPR 2018: 1199-1208 - [c13]Umar Riaz Muhammad, Yongxin Yang, Yi-Zhe Song
, Tao Xiang, Timothy M. Hospedales:
Learning Deep Sketch Abstraction. CVPR 2018: 8014-8023 - [c12]Guosheng Hu, Li Liu, Yang Yuan, Zehao Yu, Yang Hua, Zhihong Zhang, Fumin Shen, Ling Shao, Timothy M. Hospedales, Neil Martin Robertson, Yongxin Yang:
Deep Multi-task Learning to Recognise Subtle Facial Expressions of Mental States. ECCV (12) 2018: 106-123 - [i21]Umar Riaz Muhammad, Yongxin Yang, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales:
Learning Deep Sketch Abstraction. CoRR abs/1804.04804 (2018) - [i20]Yongxin Yang, Irene Garcia Morillo, Timothy M. Hospedales:
Deep Neural Decision Trees. CoRR abs/1806.06988 (2018) - [i19]Xueting Zhang, Flood Sung, Yuting Qiang, Yongxin Yang, Timothy M. Hospedales:
Deep Comparison: Relation Columns for Few-Shot Learning. CoRR abs/1811.07100 (2018) - [i18]Xiaobin Chang, Yongxin Yang, Tao Xiang, Timothy M. Hospedales:
Disjoint Label Space Transfer Learning with Common Factorised Space. CoRR abs/1812.02605 (2018) - 2017
- [b1]Yongxin Yang:
Knowledge sharing: from atomic to parametrised context and shallow to deep models. Queen Mary University of London, UK, 2017 - [j2]Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song
, Tao Xiang, Timothy M. Hospedales:
Sketch-a-Net: A Deep Neural Network that Beats Humans. Int. J. Comput. Vis. 122(3): 411-425 (2017) - [j1]Zhiyuan Shi
, Yongxin Yang, Timothy M. Hospedales
, Tao Xiang:
Weakly-Supervised Image Annotation and Segmentation with Objects and Attributes. IEEE Trans. Pattern Anal. Mach. Intell. 39(12): 2525-2538 (2017) - [c11]Yongxin Yang, Yu Zheng, Timothy M. Hospedales:
Gated Neural Networks for Option Pricing: Rationality by Design. AAAI 2017: 52-58 - [c10]Guosheng Hu, Yang Hua, Yang Yuan, Zhihong Zhang, Zheng Lu, Sankha S. Mukherjee, Timothy M. Hospedales, Neil Martin Robertson, Yongxin Yang:
Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks. ICCV 2017: 3764-3773 - [c9]Da Li
, Yongxin Yang, Yi-Zhe Song
, Timothy M. Hospedales:
Deeper, Broader and Artier Domain Generalization. ICCV 2017: 5543-5551 - [c8]Yongxin Yang, Timothy M. Hospedales:
Deep Multi-task Representation Learning: A Tensor Factorisation Approach. ICLR (Poster) 2017 - [c7]Yongxin Yang, Timothy M. Hospedales:
Trace Norm Regularised Deep Multi-Task Learning. ICLR (Workshop) 2017 - [p1]Yongxin Yang, Timothy M. Hospedales:
Unifying Multi-domain Multitask Learning: Tensor and Neural Network Perspectives. Domain Adaptation in Computer Vision Applications 2017: 291-309 - [i17]Flood Sung, Li Zhang, Tao Xiang, Timothy M. Hospedales, Yongxin Yang:
Learning to Learn: Meta-Critic Networks for Sample Efficient Learning. CoRR abs/1706.09529 (2017) - [i16]Li Zhang, Flood Sung, Feng Liu, Tao Xiang, Shaogang Gong, Yongxin Yang, Timothy M. Hospedales:
Actor-Critic Sequence Training for Image Captioning. CoRR abs/1706.09601 (2017) - [i15]Zhiyuan Shi, Yongxin Yang, Timothy M. Hospedales, Tao Xiang:
Weakly Supervised Image Annotation and Segmentation with Objects and Attributes. CoRR abs/1708.02459 (2017) - [i14]Da Li, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales:
Deeper, Broader and Artier Domain Generalization. CoRR abs/1710.03077 (2017) - [i13]Da Li
, Yongxin Yang, Yi-Zhe Song, Timothy M. Hospedales:
Learning to Generalize: Meta-Learning for Domain Generalization. CoRR abs/1710.03463 (2017) - [i12]Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, Timothy M. Hospedales:
Learning to Compare: Relation Network for Few-Shot Learning. CoRR abs/1711.06025 (2017) - 2016
- [c6]Yongxin Yang, Timothy M. Hospedales:
Multivariate Regression on the Grassmannian for Predicting Novel Domains. CVPR 2016: 5071-5080 - [i11]Guosheng Hu, Xiaojiang Peng, Yongxin Yang, Timothy M. Hospedales, Jakob Verbeek:
Frankenstein: Learning Deep Face Representations using Small Data. CoRR abs/1603.06470 (2016) - [i10]Yongxin Yang, Timothy M. Hospedales:
Deep Multi-task Representation Learning: A Tensor Factorisation Approach. CoRR abs/1605.06391 (2016) - [i9]Yongxin Yang, Timothy M. Hospedales:
Trace Norm Regularised Deep Multi-Task Learning. CoRR abs/1606.04038 (2016) - [i8]Yongxin Yang, Yu Zheng, Timothy M. Hospedales:
Gated Neural Networks for Option Pricing: Rationality by Design. CoRR abs/1609.07472 (2016) - [i7]Yongxin Yang, Timothy M. Hospedales:
Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives. CoRR abs/1611.09345 (2016) - 2015
- [c5]Qian Yu, Yongxin Yang, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales:
Sketch-a-Net that Beats Humans. BMVC 2015: 7.1-7.12 - [c4]Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kittler, William J. Christmas, Stan Z. Li, Timothy M. Hospedales:
When Face Recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face Recognition. ICCV Workshops 2015: 384-392 - [c3]Yongxin Yang, Timothy M. Hospedales:
A Unified Perspective on Multi-Domain and Multi-Task Learning. ICLR (Poster) 2015 - [i6]Yongxin Yang, Timothy M. Hospedales:
Deep Neural Networks for Sketch Recognition. CoRR abs/1501.07873 (2015) - [i5]Yanwei Fu, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Shaogang Gong:
Transductive Multi-label Zero-shot Learning. CoRR abs/1503.07790 (2015) - [i4]Yanwei Fu, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Shaogang Gong:
Transductive Multi-class and Multi-label Zero-shot Learning. CoRR abs/1503.07884 (2015) - [i3]Zhiyuan Shi, Yongxin Yang, Timothy M. Hospedales, Tao Xiang:
Weakly Supervised Learning of Objects, Attributes and their Associations. CoRR abs/1504.00045 (2015) - [i2]Guosheng Hu, Yongxin Yang, Dong Yi, Josef Kittler, William J. Christmas, Stan Z. Li, Timothy M. Hospedales:
When Face Recognition Meets with Deep Learning: an Evaluation of Convolutional Neural Networks for Face Recognition. CoRR abs/1504.02351 (2015) - [i1]Yongxin Yang, Timothy M. Hospedales:
Zero-Shot Domain Adaptation via Kernel Regression on the Grassmannian. CoRR abs/1507.07830 (2015) - 2014
- [c2]Yanwei Fu, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Shaogang Gong:
Transductive Multi-label Zero-shot Learning. BMVC 2014 - [c1]Zhiyuan Shi, Yongxin Yang, Timothy M. Hospedales, Tao Xiang:
Weakly Supervised Learning of Objects, Attributes and Their Associations. ECCV (2) 2014: 472-487
Coauthor Index
![](https://dblp.uni-trier.de./img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-21 00:04 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint