default search action
Simone Scardapane
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j51]Vikas Hassija, Vinay Chamola, Atmesh Mahapatra, Abhinandan Singal, Divyansh Goel, Kaizhu Huang, Simone Scardapane, Indro Spinelli, Mufti Mahmud, Amir Hussain:
Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 16(1): 45-74 (2024) - [j50]Siva Sai, Uday Mittal, Vinay Chamola, Kaizhu Huang, Indro Spinelli, Simone Scardapane, Zhiyuan Tan, Amir Hussain:
Machine Un-learning: An Overview of Techniques, Applications, and Future Directions. Cogn. Comput. 16(2): 482-506 (2024) - [j49]Simone Scardapane, Alessandro Baiocchi, Alessio Devoto, Valerio Marsocci, Pasquale Minervini, Jary Pomponi:
Conditional computation in neural networks: Principles and research trends. Intelligenza Artificiale 18(1): 175-190 (2024) - [j48]Indro Spinelli, Simone Scardapane, Aurelio Uncini:
A Meta-Learning Approach for Training Explainable Graph Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 35(4): 4647-4655 (2024) - [c56]Alessio Devoto, Yu Zhao, Simone Scardapane, Pasquale Minervini:
A Simple and Effective L_2 Norm-Based Strategy for KV Cache Compression. EMNLP 2024: 18476-18499 - [c55]Emilio Calvanese Strinati, Paolo Di Lorenzo, Vincenzo Sciancalepore, Adnan Aijaz, Marios Kountouris, Deniz Gündüz, Petar Popovski, Mohamed Sana, Photios A. Stavrou, Beatriz Soret, Nicola Cordeschi, Simone Scardapane, Mattia Merluzzi, Lanfranco Zanzi, Mauro Renato Boldi, Tony Q. S. Quek, Nicola di Pietro, Olivier Forceville, Francesca Costanzo, Peizheng Li:
Goal-Oriented and Semantic Communication in 6G AI-Native Networks: The 6G-GOALS Approach. EuCNC/6G Summit 2024: 1-6 - [c54]Claudio Battiloro, Indro Spinelli, Lev Telyatnikov, Michael M. Bronstein, Simone Scardapane, Paolo Di Lorenzo:
From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module. ICLR 2024 - [c53]Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T. Schaub, Petar Velickovic, Bei Wang, Yusu Wang, Guo-Wei Wei, Ghada Zamzmi:
Position: Topological Deep Learning is the New Frontier for Relational Learning. ICML 2024 - [c52]Andrea Potì, Valerio Marsocci, Alessandro Nicolosi, Simone Scardapane:
Assessing the Adaptability of Self-Supervised Learning Methods for Small-Scale Hyperspectral Imaging. IGARSS 2024: 8991-8994 - [i67]Matteo Gambella, Jary Pomponi, Simone Scardapane, Manuel Roveri:
NACHOS: Neural Architecture Search for Hardware Constrained Early Exit Neural Networks. CoRR abs/2401.13330 (2024) - [i66]Alessandro Baiocchi, Indro Spinelli, Alessandro Nicolosi, Simone Scardapane:
Adaptive Point Transformer. CoRR abs/2401.14845 (2024) - [i65]Jary Pomponi, Alessio Devoto, Simone Scardapane:
Cascaded Scaling Classifier: class incremental learning with probability scaling. CoRR abs/2402.01262 (2024) - [i64]Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Rubén Ballester, Claudio Battiloro, Guillermo Bernárdez, Tolga Birdal, Aiden Brent, Peter Chin, Sergio Escalera, Simone Fiorellino, Odin Hoff Gardaa, Gurusankar Gopalakrishnan, Devendra Govil, Josef Hoppe, Maneel Reddy Karri, Jude Khouja, Manuel Lecha, Neal Livesay, Jan Meißner, Soham Mukherjee, Alexander Nikitin, Theodore Papamarkou, Jaro Prílepok, Karthikeyan Natesan Ramamurthy, Paul Rosen, Aldo Guzmán-Sáenz, Alessandro Salatiello, Shreyas N. Samaga, Simone Scardapane, Michael T. Schaub, Luca Scofano, Indro Spinelli, Lev Telyatnikov, Quang Truong, Robin Walters, Maosheng Yang, Olga Zaghen, Ghada Zamzmi, Ali Zia, Nina Miolane:
TopoX: A Suite of Python Packages for Machine Learning on Topological Domains. CoRR abs/2402.02441 (2024) - [i63]Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue Gao, Mustafa Hajij, Roland Kwitt, Pietro Liò, Paolo Di Lorenzo, Vasileios Maroulas, Nina Miolane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane, Michael T. Schaub, Petar Velickovic, Bei Wang, Yusu Wang, Guo-Wei Wei, Ghada Zamzmi:
Position Paper: Challenges and Opportunities in Topological Deep Learning. CoRR abs/2402.08871 (2024) - [i62]Simone Scardapane, Alessandro Baiocchi, Alessio Devoto, Valerio Marsocci, Pasquale Minervini, Jary Pomponi:
Conditional computation in neural networks: principles and research trends. CoRR abs/2403.07965 (2024) - [i61]Simone Scardapane:
Alice's Adventures in a Differentiable Wonderland - Volume I, A Tour of the Land. CoRR abs/2404.17625 (2024) - [i60]Alessio Devoto, Simone Petruzzi, Jary Pomponi, Paolo Di Lorenzo, Simone Scardapane:
Adaptive Semantic Token Selection for AI-native Goal-oriented Communications. CoRR abs/2405.02330 (2024) - [i59]Tommaso Torda, Andrea Ciardiello, Simona Gargiulo, Greta Grillo, Simone Scardapane, Cecilia Voena, Stefano Giagu:
Influence based explainability of brain tumors segmentation in multimodal Magnetic Resonance Imaging. CoRR abs/2405.12222 (2024) - [i58]Lev Telyatnikov, Guillermo Bernárdez, Marco Montagna, Pavlo Vasylenko, Ghada Zamzmi, Mustafa Hajij, Michael T. Schaub, Nina Miolane, Simone Scardapane, Theodore Papamarkou:
TopoBenchmarkX: A Framework for Benchmarking Topological Deep Learning. CoRR abs/2406.06642 (2024) - [i57]Alessio Devoto, Yu Zhao, Simone Scardapane, Pasquale Minervini:
A Simple and Effective L2 Norm-Based Strategy for KV Cache Compression. CoRR abs/2406.11430 (2024) - [i56]Alessio Verdone, Alessio Devoto, Cristiano Sebastiani, Joseph Carmignani, Monica D'Onofrio, Stefano Giagu, Simone Scardapane, Massimo Panella:
Enhancing High-Energy Particle Physics Collision Analysis through Graph Data Attribution Techniques. CoRR abs/2407.14859 (2024) - [i55]Alessio Devoto, Federico Alvetreti, Jary Pomponi, Paolo Di Lorenzo, Pasquale Minervini, Simone Scardapane:
Adaptive Layer Selection for Efficient Vision Transformer Fine-Tuning. CoRR abs/2408.08670 (2024) - [i54]Marco Montagna, Simone Scardapane, Lev Telyatnikov:
Topological Deep Learning with State-Space Models: A Mamba Approach for Simplicial Complexes. CoRR abs/2409.12033 (2024) - [i53]Francesco Verdini, Pierfrancesco Melucci, Stefano Perna, Francesco Cariaggi, Marco Gaido, Sara Papi, Szymon Mazurek, Marek Kasztelnik, Luisa Bentivogli, Sébastien Bratières, Paolo Merialdo, Simone Scardapane:
How to Connect Speech Foundation Models and Large Language Models? What Matters and What Does Not. CoRR abs/2409.17044 (2024) - 2023
- [j47]Jary Pomponi, Daniele Dántoni, Alessandro Nicolosi, Simone Scardapane:
Rearranging Pixels is a Powerful Black-Box Attack for RGB and Infrared Deep Learning Models. IEEE Access 11: 11298-11306 (2023) - [j46]Michele Guerra, Simone Scardapane, Filippo Maria Bianchi:
Probabilistic Load Forecasting With Reservoir Computing. IEEE Access 11: 145989-146002 (2023) - [j45]Simone Scardapane, Claudio Gallicchio, Alessio Micheli, Miguel C. Soriano:
Guest Editorial: Trends in Reservoir Computing. Cogn. Comput. 15(5): 1407-1408 (2023) - [j44]Leandro Maglianella, Lorenzo Nicoletti, Stefano Giagu, Christian Napoli, Simone Scardapane:
Convergent Approaches to AI Explainability for HEP Muonic Particles Pattern Recognition. Comput. Softw. Big Sci. 7(1) (2023) - [j43]Simone Ercolino, Alessio Devoto, Luca Monorchio, Matteo Santini, Silvio Mazzaro, Simone Scardapane:
On the robustness of vision transformers for in-flight monocular depth estimation. Ind. Artif. Intell. 1(1) (2023) - [j42]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Continual learning with invertible generative models. Neural Networks 164: 606-616 (2023) - [j41]Indro Spinelli, Riccardo Bianchini, Simone Scardapane:
Drop edges and adapt: A fairness enforcing fine-tuning for graph neural networks. Neural Networks 167: 159-167 (2023) - [j40]Valerio Marsocci, Simone Scardapane:
Continual Barlow Twins: Continual Self-Supervised Learning for Remote Sensing Semantic Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 16: 5049-5060 (2023) - [j39]Eric Guizzo, Tillman Weyde, Simone Scardapane, Danilo Comminiello:
Learning Speech Emotion Representations in the Quaternion Domain. IEEE ACM Trans. Audio Speech Lang. Process. 31: 1200-1212 (2023) - [j38]Alessio Devoto, Indro Spinelli, Francesca Murabito, Fabrizio Chiovoloni, Riccardo Musmeci, Simone Scardapane:
Reidentification of Objects From Aerial Photos With Hybrid Siamese Neural Networks. IEEE Trans. Ind. Informatics 19(3): 2997-3005 (2023) - [j37]Danilo Comminiello, Alireza Nezamdoust, Simone Scardapane, Michele Scarpiniti, Amir Hussain, Aurelio Uncini:
A New Class of Efficient Adaptive Filters for Online Nonlinear Modeling. IEEE Trans. Syst. Man Cybern. Syst. 53(3): 1384-1396 (2023) - [c51]Tommaso Torda, Simona Gargiulo, Greta Grillo, Andrea Ciardiello, Cecilia Voena, Stefano Giagu, Simone Scardapane:
Tracin in Semantic Segmentation of Tumor Brains in MRI, an Extended Approach (SHORT PAPER). HC@AIxIA 2023: 31-40 - [c50]Lev Telyatnikov, Simone Scardapane:
EGG-GAE: scalable graph neural networks for tabular data imputation. AISTATS 2023: 2661-2676 - [c49]Valerio Marsocci, Nicolas Gonthier, Anatol Garioud, Simone Scardapane, Clément Mallet:
GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates. CVPR Workshops 2023: 2075-2085 - [c48]Indro Spinelli, Michele Guerra, Filippo Maria Bianchi, Simone Scardapane:
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability. ESANN 2023 - [c47]Alberto Carraro, Gaetano Saurio, Ainara López-Maestresalas, Simone Scardapane, Francesco Marinello:
Convolutional Neural Networks for the Detection of Esca Disease Complex in Asymptomatic Grapevine Leaves. ICIAP Workshops (1) 2023: 418-429 - [c46]Gaetano Saurio, Marco Muscas, Indro Spinelli, Valerio Rughetti, Irma Della Giovampaola, Simone Scardapane:
ArcheoWeedNet: Weed Classification in the Parco archeologico del Colosseo. ICIAP Workshops (1) 2023: 430-441 - [c45]Hamna Moieez, Valerio Marsocci, Simone Scardapane:
Continual Self-Supervised Learning in Earth Observation with Embedding Regularization. IGARSS 2023: 5029-5032 - [c44]Michele Guerra, Indro Spinelli, Simone Scardapane, Filippo Maria Bianchi:
Explainability in subgraphs-enhanced Graph Neural Networks. NLDL 2023 - [c43]Mathilde Papillon, Mustafa Hajij, Audun Myers, Florian Frantzen, Ghada Zamzmi, Helen Jenne, Johan Mathe, Josef Hoppe, Michael T. Schaub, Theodore Papamarkou, Aldo Guzmán-Sáenz, Bastian Rieck, Neal Livesay, Tamal K. Dey, Abraham Rabinowitz, Aiden Brent, Alessandro Salatiello, Alexander Nikitin, Ali Zia, Claudio Battiloro, Dmitrii Gavrilev, Georg Bökman, German Magai, Gleb Bazhenov, Guillermo Bernárdez, Indro Spinelli, Jens Agerberg, Kalyan Varma Nadimpalli, Lev Telyatnikov, Luca Scofano, Lucia Testa, Manuel Lecha, Maosheng Yang, Mohammed Hassanin, Odin Hoff Gardaa, Olga Zaghen, Paul Häusner, Paul Snopoff, Pavlo Melnyk, Rubén Ballester, Sadrodin Barikbin, Sergio Escalera, Simone Fiorellino, Henry Kvinge, Jan Meissner, Karthikeyan Natesan Ramamurthy, Michael Scholkemper, Paul Rosen, Robin Walters, Shreyas N. Samaga, Soham Mukherjee, Sophia Sanborn, Tegan Emerson, Timothy Doster, Tolga Birdal, Vincent P. Grande, Abdelwahed Khamis, Simone Scardapane, Suraj Singh, Tatiana Malygina, Yixiao Yue, Nina Miolane:
ICML 2023 Topological Deep Learning Challenge: Design and Results. TAG-ML 2023: 3-8 - [i52]Indro Spinelli, Riccardo Bianchini, Simone Scardapane:
Drop Edges and Adapt: a Fairness Enforcing Fine-tuning for Graph Neural Networks. CoRR abs/2302.11479 (2023) - [i51]Indro Spinelli, Michele Guerra, Filippo Maria Bianchi, Simone Scardapane:
Combining Stochastic Explainers and Subgraph Neural Networks can Increase Expressivity and Interpretability. CoRR abs/2304.07152 (2023) - [i50]Valerio Marsocci, Nicolas Gonthier, Anatol Garioud, Simone Scardapane, Clément Mallet:
GeoMultiTaskNet: remote sensing unsupervised domain adaptation using geographical coordinates. CoRR abs/2304.07750 (2023) - [i49]Claudio Battiloro, Indro Spinelli, Lev Telyatnikov, Michael M. Bronstein, Simone Scardapane, Paolo Di Lorenzo:
From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module. CoRR abs/2305.16174 (2023) - [i48]Michele Guerra, Simone Scardapane, Filippo Maria Bianchi:
Probabilistic load forecasting with Reservoir Computing. CoRR abs/2308.12844 (2023) - [i47]Lev Telyatnikov, Maria Sofia Bucarelli, Guillermo Bernárdez, Olga Zaghen, Simone Scardapane, Pietro Lio:
Hypergraph Neural Networks through the Lens of Message Passing: A Common Perspective to Homophily and Architecture Design. CoRR abs/2310.07684 (2023) - [i46]Bartosz Wójcik, Alessio Devoto, Karol Pustelnik, Pasquale Minervini, Simone Scardapane:
Adaptive Computation Modules: Granular Conditional Computation For Efficient Inference. CoRR abs/2312.10193 (2023) - 2022
- [j36]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
A Probabilistic Re-Intepretation of Confidence Scores in Multi-Exit Models. Entropy 24(1): 1 (2022) - [j35]Lorenzo Lastilla, Serena Ammirati, Donatella Firmani, Nikos Komodakis, Paolo Merialdo, Simone Scardapane:
Self-supervised learning for medieval handwriting identification: A case study from the Vatican Apostolic Library. Inf. Process. Manag. 59(3): 102875 (2022) - [j34]Indro Spinelli, Simone Scardapane, Amir Hussain, Aurelio Uncini:
FairDrop: Biased Edge Dropout for Enhancing Fairness in Graph Representation Learning. IEEE Trans. Artif. Intell. 3(3): 344-354 (2022) - [j33]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Centroids Matching: an efficient Continual Learning approach operating in the embedding space. Trans. Mach. Learn. Res. 2022 (2022) - [c42]Arya Farkhondeh, Cristina Palmero, Simone Scardapane, Sergio Escalera:
Towards Self-Supervised Gaze Estimation. BMVC 2022: 549 - [c41]Onur Çopur, Mert Nakip, Simone Scardapane, Jürgen Slowack:
Engagement Detection with Multi-Task Training in E-Learning Environments. ICIAP (3) 2022: 411-422 - [c40]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Pixle: a fast and effective black-box attack based on rearranging pixels. IJCNN 2022: 1-7 - [c39]Flaminia Spasiano, Gabriele Gennaro, Simone Scardapane:
Evaluating Adversarial Attacks and Defences in Infrared Deep Learning Monitoring Systems. IJCNN 2022: 1-6 - [c38]Alessio Verdone, Simone Scardapane, Massimo Panella:
Multi-site Forecasting of Energy Time Series with Spatio-Temporal Graph Neural Networks. IJCNN 2022: 1-8 - [i45]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Pixle: a fast and effective black-box attack based on rearranging pixels. CoRR abs/2202.02236 (2022) - [i44]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Continual Learning with Invertible Generative Models. CoRR abs/2202.05694 (2022) - [i43]Arya Farkhondeh, Cristina Palmero, Simone Scardapane, Sergio Escalera:
Towards Self-Supervised Gaze Estimation. CoRR abs/2203.10974 (2022) - [i42]Eric Guizzo, Tillman Weyde, Simone Scardapane, Danilo Comminiello:
Learning Speech Emotion Representations in the Quaternion Domain. CoRR abs/2204.02385 (2022) - [i41]Onur Çopur, Mert Nakip, Simone Scardapane, Jürgen Slowack:
Engagement Detection with Multi-Task Training in E-Learning Environments. CoRR abs/2204.04020 (2022) - [i40]Valerio Marsocci, Simone Scardapane:
Continual Barlow Twins: continual self-supervised learning for remote sensing semantic segmentation. CoRR abs/2205.11319 (2022) - [i39]Valerio Marsocci, Virginia Coletta, Roberta Ravanelli, Simone Scardapane, Mattia Crespi:
Inferring 3D change detection from bitemporal optical images. CoRR abs/2205.15903 (2022) - [i38]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Centroids Matching: an efficient Continual Learning approach operating in the embedding space. CoRR abs/2208.02048 (2022) - [i37]Michele Guerra, Indro Spinelli, Simone Scardapane, Filippo Maria Bianchi:
Explainability in subgraphs-enhanced Graph Neural Networks. CoRR abs/2209.07926 (2022) - [i36]Lev Telyatnikov, Simone Scardapane:
EGG-GAE: scalable graph neural networks for tabular data imputation. CoRR abs/2210.10446 (2022) - 2021
- [j32]Livia Lilli, Enrico Giarnieri, Simone Scardapane:
A Calibrated Multiexit Neural Network for Detecting Urothelial Cancer Cells. Comput. Math. Methods Medicine 2021: 5569458:1-5569458:11 (2021) - [j31]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Bayesian Neural Networks with Maximum Mean Discrepancy regularization. Neurocomputing 453: 428-437 (2021) - [j30]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Structured Ensembles: An approach to reduce the memory footprint of ensemble methods. Neural Networks 144: 407-418 (2021) - [j29]Valerio Marsocci, Simone Scardapane, Nikos Komodakis:
MARE: Self-Supervised Multi-Attention REsu-Net for Semantic Segmentation in Remote Sensing. Remote. Sens. 13(16): 3275 (2021) - [j28]Filippo Maria Bianchi, Simone Scardapane, Sigurd Løkse, Robert Jenssen:
Reservoir Computing Approaches for Representation and Classification of Multivariate Time Series. IEEE Trans. Neural Networks Learn. Syst. 32(5): 2169-2179 (2021) - [j27]Indro Spinelli, Simone Scardapane, Aurelio Uncini:
Adaptive Propagation Graph Convolutional Network. IEEE Trans. Neural Networks Learn. Syst. 32(10): 4755-4760 (2021) - [j26]Simone Scardapane, Indro Spinelli, Paolo Di Lorenzo:
Distributed Training of Graph Convolutional Networks. IEEE Trans. Signal Inf. Process. over Networks 7: 87-100 (2021) - [c37]Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L. Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido M. van de Ven, Martin Mundt, Qi She, Keiland W. Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, German Ignacio Parisi, Fabio Cuzzolin, Andreas S. Tolias, Simone Scardapane, Luca Antiga, Subutai Ahmad, Adrian Popescu, Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, Davide Maltoni:
Avalanche: An End-to-End Library for Continual Learning. CVPR Workshops 2021: 3600-3610 - [i35]Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L. Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido M. van de Ven, Martin Mundt, Qi She, Keiland W. Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, German Ignacio Parisi, Fabio Cuzzolin, Andreas S. Tolias, Simone Scardapane, Luca Antiga, Subutai Amhad, Adrian Popescu, Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu, Davide Maltoni:
Avalanche: an End-to-End Library for Continual Learning. CoRR abs/2104.00405 (2021) - [i34]Danilo Comminiello, Alireza Nezamdoust, Simone Scardapane, Michele Scarpiniti, Amir Hussain, Aurelio Uncini:
A New Class of Efficient Adaptive Filters for Online Nonlinear Modeling. CoRR abs/2104.09641 (2021) - [i33]Indro Spinelli, Simone Scardapane, Amir Hussain, Aurelio Uncini:
Biased Edge Dropout for Enhancing Fairness in Graph Representation Learning. CoRR abs/2104.14210 (2021) - [i32]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Structured Ensembles: an Approach to Reduce the Memory Footprint of Ensemble Methods. CoRR abs/2105.02551 (2021) - [i31]Indro Spinelli, Simone Scardapane, Aurelio Uncini:
A Meta-Learning Approach for Training Explainable Graph Neural Networks. CoRR abs/2109.09426 (2021) - 2020
- [j25]Riccardo Vecchi, Simone Scardapane, Danilo Comminiello, Aurelio Uncini:
Compressing deep-quaternion neural networks with targeted regularisation. CAAI Trans. Intell. Technol. 5(3): 172-176 (2020) - [j24]Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, Aurelio Uncini:
Why Should We Add Early Exits to Neural Networks? Cogn. Comput. 12(5): 954-966 (2020) - [j23]Simone Totaro, Amir Hussain, Simone Scardapane:
A non-parametric softmax for improving neural attention in time-series forecasting. Neurocomputing 381: 177-185 (2020) - [j22]Jary Pomponi, Simone Scardapane, Vincenzo Lomonaco, Aurelio Uncini:
Efficient continual learning in neural networks with embedding regularization. Neurocomputing 397: 139-148 (2020) - [j21]Enzo Baccarelli, Simone Scardapane, Michele Scarpiniti, Alireza Momenzadeh, Aurelio Uncini:
Optimized training and scalable implementation of Conditional Deep Neural Networks with early exits for Fog-supported IoT applications. Inf. Sci. 521: 107-143 (2020) - [j20]Indro Spinelli, Simone Scardapane, Aurelio Uncini:
Missing data imputation with adversarially-trained graph convolutional networks. Neural Networks 129: 249-260 (2020) - [j19]Simone Scardapane, Steven Van Vaerenbergh, Amir Hussain, Aurelio Uncini:
Complex-Valued Neural Networks With Nonparametric Activation Functions. IEEE Trans. Emerg. Top. Comput. Intell. 4(2): 140-150 (2020) - [c36]Claudio Gallicchio, Mantas Lukosevicius, Simone Scardapane:
Frontiers in Reservoir Computing. ESANN 2020: 559-566 - [c35]Antonio Falvo, Danilo Comminiello, Simone Scardapane, Michele Scarpiniti, Aurelio Uncini:
A Wide Multimodal Dense U-Net for Fast Magnetic Resonance Imaging. EUSIPCO 2020: 1274-1278 - [c34]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Enzo Baccarelli, Aurelio Uncini:
Differentiable Branching In Deep Networks for Fast Inference. ICASSP 2020: 4167-4171 - [c33]Michela Ricciardi Celsi, Simone Scardapane, Danilo Comminiello:
Quaternion Neural Networks for 3D Sound Source Localization in Reverberant Environments. MLSP 2020: 1-6 - [p11]Michele Scarpiniti, Simone Scardapane, Danilo Comminiello, Aurelio Uncini:
Music Genre Classification Using Stacked Auto-Encoders. Neural Approaches to Dynamics of Signal Exchanges 2020: 11-19 - [p10]Simone Scardapane, Michele Scarpiniti, Danilo Comminiello, Aurelio Uncini:
Learning Activation Functions from Data Using Cubic Spline Interpolation. Neural Advances in Processing Nonlinear Dynamic Signals 2020: 73-83 - [p9]Danilo Comminiello, Michele Scarpiniti, Simone Scardapane, Raffaele Parisi, Aurelio Uncini:
A Low-Complexity Linear-in-the-Parameters Nonlinear Filter for Distorted Speech Signals. Neural Advances in Processing Nonlinear Dynamic Signals 2020: 107-117 - [p8]Michele Scarpiniti, Simone Scardapane, Danilo Comminiello, Raffaele Parisi, Aurelio Uncini:
Separation of Drum and Bass from Monaural Tracks. Neural Advances in Processing Nonlinear Dynamic Signals 2020: 141-151 - [i30]Indro Spinelli, Simone Scardapane, Aurelio Uncini:
Adaptive Propagation Graph Convolutional Network. CoRR abs/2002.10306 (2020) - [i29]Claudio Gallicchio, Simone Scardapane:
Deep Randomized Neural Networks. CoRR abs/2002.12287 (2020) - [i28]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Bayesian Neural Networks With Maximum Mean Discrepancy Regularization. CoRR abs/2003.00952 (2020) - [i27]Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, Aurelio Uncini:
Why should we add early exits to neural networks? CoRR abs/2004.12814 (2020) - [i26]Paolo Di Lorenzo, Simone Scardapane:
Distributed Stochastic Nonconvex Optimization and Learning based on Successive Convex Approximation. CoRR abs/2004.14882 (2020) - [i25]Jary Pomponi, Simone Scardapane, Aurelio Uncini:
Pseudo-Rehearsal for Continual Learning with Normalizing Flows. CoRR abs/2007.02443 (2020) - [i24]Simone Scardapane, Indro Spinelli, Paolo Di Lorenzo:
Distributed Graph Convolutional Networks. CoRR abs/2007.06281 (2020)
2010 – 2019
- 2019
- [j18]Simone Scardapane, Steven Van Vaerenbergh, Simone Totaro, Aurelio Uncini:
Kafnets: Kernel-based non-parametric activation functions for neural networks. Neural Networks 110: 19-32 (2019) - [c32]Paolo Di Lorenzo, Simone Scardapane:
Distributed Stochastic Nonconvex Optimization and Learning based on Successive Convex Approximation. ACSSC 2019: 2224-2228 - [c31]Simone Scardapane, Steven Van Vaerenbergh, Danilo Comminiello, Aurelio Uncini:
Widely Linear Kernels for Complex-valued Kernel Activation Functions. ICASSP 2019: 8528-8532 - [c30]Danilo Comminiello, Marco Lella, Simone Scardapane, Aurelio Uncini:
Quaternion Convolutional Neural Networks for Detection and Localization of 3D Sound Events. ICASSP 2019: 8533-8537 - [c29]Claudio Gallicchio, Simone Scardapane:
Deep Randomized Neural Networks. INNSBDDL (Tutorials) 2019: 43-68 - [c28]Simone Scardapane, Elena Nieddu, Donatella Firmani, Paolo Merialdo:
Multikernel Activation Functions: Formulation and a Case Study. INNSBDDL 2019: 320-329 - [c27]Antonio Falvo, Danilo Comminiello, Simone Scardapane, Michele Scarpiniti, Aurelio Uncini:
A Multimodal Dense U-Net For Accelerating Multiple Sclerosis MRI. MLSP 2019: 1-6 - [i23]Simone Scardapane, Elena Nieddu, Donatella Firmani, Paolo Merialdo:
Multikernel activation functions: formulation and a case study. CoRR abs/1901.10232 (2019) - [i22]Simone Scardapane, Steven Van Vaerenbergh, Danilo Comminiello, Aurelio Uncini:
Widely Linear Kernels for Complex-Valued Kernel Activation Functions. CoRR abs/1902.02085 (2019) - [i21]Michele Cirillo, Simone Scardapane, Steven Van Vaerenbergh, Aurelio Uncini:
On the Stability and Generalization of Learning with Kernel Activation Functions. CoRR abs/1903.11990 (2019) - [i20]Indro Spinelli, Simone Scardapane, Aurelio Uncini:
Missing Data Imputation with Adversarially-trained Graph Convolutional Networks. CoRR abs/1905.01907 (2019) - [i19]Indro Spinelli, Simone Scardapane, Michele Scarpiniti, Aurelio Uncini:
Efficient data augmentation using graph imputation neural networks. CoRR abs/1906.08502 (2019) - [i18]Riccardo Vecchi, Simone Scardapane, Danilo Comminiello, Aurelio Uncini:
Compressing deep quaternion neural networks with targeted regularization. CoRR abs/1907.11546 (2019) - [i17]Antonio Falvo, Danilo Comminiello, Simone Scardapane, Giorgio Finesi, Michele Scarpiniti, Aurelio Uncini:
A Multimodal Deep Network for the Reconstruction of T2W MR Images. CoRR abs/1908.03009 (2019) - [i16]Jary Pomponi, Simone Scardapane, Vincenzo Lomonaco, Aurelio Uncini:
Efficient Continual Learning in Neural Networks with Embedding Regularization. CoRR abs/1909.03742 (2019) - 2018
- [j17]Simone Scardapane, Dianhui Wang, Aurelio Uncini:
Bayesian Random Vector Functional-Link Networks for Robust Data Modeling. IEEE Trans. Cybern. 48(7): 2049-2059 (2018) - [j16]Simone Scardapane, Paolo Di Lorenzo:
Stochastic Training of Neural Networks via Successive Convex Approximations. IEEE Trans. Neural Networks Learn. Syst. 29(10): 4947-4956 (2018) - [c26]Filippo Maria Bianchi, Simone Scardapane, Sigurd Løkse, Robert Jenssen:
Bidirectional deep-readout echo state networks. ESANN 2018 - [c25]Danilo Comminiello, Michele Scarpiniti, Simone Scardapane, Luis Antonio Azpicueta-Ruiz, Aurelio Uncini:
Combined Sparse Regularization for Nonlinear Adaptive Filters. EUSIPCO 2018: 336-340 - [c24]Simone Scardapane, Steven Van Vaerenbergh, Danilo Comminiello, Aurelio Uncini:
Improving Graph Convolutional Networks with Non-Parametric Activation Functions. EUSIPCO 2018: 872-876 - [c23]Danilo Comminiello, Michele Scarpiniti, Simone Scardapane, Aurelio Uncini:
Sparse functional link adaptive filter using an ℓ1-norm regularization. ISCAS 2018: 1-5 - [c22]Simone Scardapane, Steven Van Vaerenbergh, Danilo Comminiello, Simone Totaro, Aurelio Uncini:
Recurrent Neural Networks with flexible Gates using Kernel activation Functions. MLSP 2018: 1-6 - [p7]Michele Scarpiniti, Simone Scardapane, Danilo Comminiello, Raffaele Parisi, Aurelio Uncini:
Effective Blind Source Separation Based on the Adam Algorithm. Multidisciplinary Approaches to Neural Computing 2018: 57-66 - [p6]Simone Scardapane, Rosa Altilio, Valentina Ciccarelli, Aurelio Uncini, Massimo Panella:
Privacy-Preserving Data Mining for Distributed Medical Scenarios. Multidisciplinary Approaches to Neural Computing 2018: 119-128 - [i15]Simone Scardapane, Steven Van Vaerenbergh, Amir Hussain, Aurelio Uncini:
Complex-valued Neural Networks with Non-parametric Activation Functions. CoRR abs/1802.08026 (2018) - [i14]Simone Scardapane, Steven Van Vaerenbergh, Danilo Comminiello, Aurelio Uncini:
Improving Graph Convolutional Networks with Non-Parametric Activation Functions. CoRR abs/1802.09405 (2018) - [i13]Filippo Maria Bianchi, Simone Scardapane, Sigurd Løkse, Robert Jenssen:
Reservoir computing approaches for representation and classification of multivariate time series. CoRR abs/1803.07870 (2018) - [i12]Simone Scardapane, Steven Van Vaerenbergh, Danilo Comminiello, Simone Totaro, Aurelio Uncini:
Recurrent Neural Networks with Flexible Gates using Kernel Activation Functions. CoRR abs/1807.04065 (2018) - [i11]Danilo Comminiello, Marco Lella, Simone Scardapane, Aurelio Uncini:
Quaternion Convolutional Neural Networks for Detection and Localization of 3D Sound Events. CoRR abs/1812.06811 (2018) - 2017
- [j15]Simone Scardapane, Aurelio Uncini:
Semi-supervised Echo State Networks for Audio Classification. Cogn. Comput. 9(1): 125-135 (2017) - [j14]Simone Scardapane, John B. Butcher, Filippo Maria Bianchi, Zeeshan Khawar Malik:
Advances in Biologically Inspired Reservoir Computing. Cogn. Comput. 9(3): 295-296 (2017) - [j13]Simone Scardapane, Danilo Comminiello, Amir Hussain, Aurelio Uncini:
Group sparse regularization for deep neural networks. Neurocomputing 241: 81-89 (2017) - [j12]Simone Scardapane, Paolo Di Lorenzo:
A framework for parallel and distributed training of neural networks. Neural Networks 91: 42-54 (2017) - [j11]Roberto Fierimonte, Simone Scardapane, Aurelio Uncini, Massimo Panella:
Fully Decentralized Semi-supervised Learning via Privacy-preserving Matrix Completion. IEEE Trans. Neural Networks Learn. Syst. 28(11): 2699-2711 (2017) - [j10]Simone Scardapane, Dianhui Wang:
Randomness in neural networks: an overview. WIREs Data Mining Knowl. Discov. 7(2) (2017) - [c21]Donatella Firmani, Paolo Merialdo, Elena Nieddu, Simone Scardapane:
In Codice Ratio: OCR of Handwritten Latin Documents using Deep Convolutional Networks. AI*CH@AI*IA 2017: 9-16 - [c20]Steven Van Vaerenbergh, Simone Scardapane, Ignacio Santamaría:
Recursive multikernel filters exploiting nonlinear temporal structure. EUSIPCO 2017: 2674-2678 - [c19]Indro Spinelli, Simone Scardapane, Michele Scarpiniti, Aurelio Uncini:
Efficient Data Augmentation Using Graph Imputation Neural Networks. IIH-MSP (1) 2017: 57-66 - [c18]Eleonora Grassucci, Simone Scardapane, Danilo Comminiello, Aurelio Uncini:
Flexible Generative Adversarial Networks with Non-parametric Activation Functions. IIH-MSP (1) 2017: 67-77 - [c17]Antonio Falvo, Danilo Comminiello, Simone Scardapane, Michele Scarpiniti, Aurelio Uncini:
A Multimodal Deep Network for the Reconstruction of T2W MR Images. IIH-MSP (1) 2017: 423-431 - [c16]Simone Scardapane, Lucas Stoffl, Florian Röhrbein, Aurelio Uncini:
On the use of deep recurrent neural networks for detecting audio spoofing attacks. IJCNN 2017: 3483-3490 - [i10]Simone Scardapane, Jie Chen, Cédric Richard:
Adaptation and learning over networks for nonlinear system modeling. CoRR abs/1704.08913 (2017) - [i9]Steven Van Vaerenbergh, Simone Scardapane, Ignacio Santamaría:
Recursive Multikernel Filters Exploiting Nonlinear Temporal Structure. CoRR abs/1706.03533 (2017) - [i8]Simone Scardapane, Paolo Di Lorenzo:
Stochastic Training of Neural Networks via Successive Convex Approximations. CoRR abs/1706.04769 (2017) - [i7]Simone Scardapane, Steven Van Vaerenbergh, Aurelio Uncini:
Kafnets: kernel-based non-parametric activation functions for neural networks. CoRR abs/1707.04035 (2017) - [i6]Filippo Maria Bianchi, Simone Scardapane, Sigurd Løkse, Robert Jenssen:
Bidirectional deep echo state networks. CoRR abs/1711.06509 (2017) - 2016
- [j9]Simone Scardapane, Massimo Panella, Danilo Comminiello, Amir Hussain, Aurelio Uncini:
Distributed Reservoir Computing with Sparse Readouts [Research Frontier]. IEEE Comput. Intell. Mag. 11(4): 59-70 (2016) - [j8]Filippo Maria Bianchi, Simone Scardapane, Antonello Rizzi, Aurelio Uncini, Alireza Sadeghian:
Granular Computing Techniques for Classification and Semantic Characterization of Structured Data. Cogn. Comput. 8(3): 442-461 (2016) - [j7]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Aurelio Uncini:
A semi-supervised random vector functional-link network based on the transductive framework. Inf. Sci. 364-365: 156-166 (2016) - [j6]Simone Scardapane, Dianhui Wang, Massimo Panella:
A decentralized training algorithm for Echo State Networks in distributed big data applications. Neural Networks 78: 65-74 (2016) - [j5]Simone Scardapane, Roberto Fierimonte, Paolo Di Lorenzo, Massimo Panella, Aurelio Uncini:
Distributed semi-supervised support vector machines. Neural Networks 80: 43-52 (2016) - [c15]Simone Scardapane, Michele Scarpiniti, Danilo Comminiello, Aurelio Uncini:
Diffusion spline adaptive filtering. EUSIPCO 2016: 1498-1502 - [c14]Simone Scardapane, Rosa Altilio, Massimo Panella, Aurelio Uncini:
Distributed spectral clustering based on Euclidean distance matrix completion. IJCNN 2016: 3093-3100 - [c13]Paolo Di Lorenzo, Simone Scardapane:
Parallel and distributed training of neural networks via successive convex approximation. MLSP 2016: 1-6 - [p5]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Raffaele Parisi, Aurelio Uncini:
Benchmarking Functional Link Expansions for Audio Classification Tasks. Advances in Neural Networks 2016: 133-141 - [p4]Roberto Fierimonte, Simone Scardapane, Massimo Panella, Aurelio Uncini:
A Comparison of Consensus Strategies for Distributed Learning of Random Vector Functional-Link Networks. Advances in Neural Networks 2016: 143-152 - [p3]Danilo Comminiello, Michele Scarpiniti, Simone Scardapane, Raffaele Parisi, Aurelio Uncini:
A Nonlinear Acoustic Echo Canceller with Improved Tracking Capabilities. Recent Advances in Nonlinear Speech Processing 2016: 235-243 - [i5]Simone Scardapane, Michele Scarpiniti, Danilo Comminiello, Aurelio Uncini:
Learning activation functions from data using cubic spline interpolation. CoRR abs/1605.05509 (2016) - [i4]Michele Scarpiniti, Simone Scardapane, Danilo Comminiello, Raffaele Parisi, Aurelio Uncini:
Effective Blind Source Separation Based on the Adam Algorithm. CoRR abs/1605.07833 (2016) - [i3]Simone Scardapane, Danilo Comminiello, Amir Hussain, Aurelio Uncini:
Group Sparse Regularization for Deep Neural Networks. CoRR abs/1607.00485 (2016) - [i2]Simone Scardapane:
Distributed Supervised Learning using Neural Networks. CoRR abs/1607.06364 (2016) - [i1]Simone Scardapane, Paolo Di Lorenzo:
A Framework for Parallel and Distributed Training of Neural Networks. CoRR abs/1610.07448 (2016) - 2015
- [j4]Simone Scardapane, Dianhui Wang, Massimo Panella, Aurelio Uncini:
Distributed learning for Random Vector Functional-Link networks. Inf. Sci. 301: 271-284 (2015) - [j3]Danilo Comminiello, Michele Scarpiniti, Simone Scardapane, Raffaele Parisi, Aurelio Uncini:
Improving nonlinear modeling capabilities of functional link adaptive filters. Neural Networks 69: 51-59 (2015) - [j2]Filippo Maria Bianchi, Simone Scardapane, Aurelio Uncini, Antonello Rizzi, Alireza Sadeghian:
Prediction of telephone calls load using Echo State Network with exogenous variables. Neural Networks 71: 204-213 (2015) - [j1]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Aurelio Uncini:
Online Sequential Extreme Learning Machine With Kernels. IEEE Trans. Neural Networks Learn. Syst. 26(9): 2214-2220 (2015) - [c12]Danilo Comminiello, Simone Scardapane, Michele Scarpiniti, Raffaele Parisi, Aurelio Uncini:
Functional link expansions for nonlinear modeling of audio and speech signals. IJCNN 2015: 1-8 - [c11]Simone Scardapane, Roberto Fierimonte, Dianhui Wang, Massimo Panella, Aurelio Uncini:
Distributed music classification using Random Vector Functional-Link nets. IJCNN 2015: 1-8 - [c10]Simone Scardapane, Massimo Panella, Danilo Comminiello, Aurelio Uncini:
Learning from Distributed Data Sources Using Random Vector Functional-Link Networks. INNS Conference on Big Data 2015: 468-477 - [p2]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Aurelio Uncini:
Significance-Based Pruning for Reservoir's Neurons in Echo State Networks. Advances in Neural Networks 2015: 31-38 - [p1]Danilo Comminiello, Simone Scardapane, Michele Scarpiniti, Raffaele Parisi, Aurelio Uncini:
Online Selection of Functional Links for Nonlinear System Identification. Advances in Neural Networks 2015: 39-47 - 2014
- [c9]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Aurelio Uncini:
GP-based kernel evolution for L2-Regularization Networks. IEEE Congress on Evolutionary Computation 2014: 1674-1681 - [c8]Simone Scardapane, Gabriele Nocco, Danilo Comminiello, Michele Scarpiniti, Aurelio Uncini:
An effective criterion for pruning reservoir's connections in Echo State Networks. IJCNN 2014: 1205-1212 - [c7]Filippo Maria Bianchi, Simone Scardapane, Lorenzo Livi, Aurelio Uncini, Antonello Rizzi:
An interpretable graph-based image classifier. IJCNN 2014: 2339-2346 - 2013
- [c6]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Aurelio Uncini:
Music classification using extreme learning machines. ISPA 2013: 377-381 - [c5]Danilo Comminiello, Simone Scardapane, Michele Scarpiniti, Raffaele Parisi, Aurelio Uncini:
Convex combination of MIMO filters for multichannel acoustic echo cancellation. ISPA 2013: 778-782 - [c4]Danilo Comminiello, Simone Scardapane, Michele Scarpiniti, Aurelio Uncini:
Interactive quality enhancement in acoustic echo cancellation. TSP 2013: 488-492 - [c3]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Aurelio Uncini:
A Preliminary Study on Transductive Extreme Learning Machines. WIRN 2013: 25-32 - [c2]Michele Scarpiniti, Danilo Comminiello, Simone Scardapane, Raffaele Parisi, Aurelio Uncini:
Proportionate Algorithms for Blind Source Separation. WIRN 2013: 99-106 - 2012
- [c1]Simone Scardapane, Danilo Comminiello, Michele Scarpiniti, Raffaele Parisi, Aurelio Uncini:
PM 10 Forecasting Using Kernel Adaptive Filtering: An Italian Case Study. WIRN 2012: 93-100
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-15 20:38 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint