default search action
Ioannis K. Argyros
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2016
- [b2]George A. Anastassiou, Ioannis K. Argyros:
Intelligent Numerical Methods: Applications to Fractional Calculus. Studies in Computational Intelligence 624, Springer 2016, ISBN 978-3-319-26720-3, pp. 1-420 - [b1]George A. Anastassiou, Ioannis K. Argyros:
Intelligent Numerical Methods II: Applications to Multivariate Fractional Calculus. Studies in Computational Intelligence 649, Springer 2016, ISBN 978-3-319-33605-3, pp. 1-116
Journal Articles
- 2025
- [j237]Doha A. Kattan, Umar Ishtiaq, Muhammad Farhan, Ioannis K. Argyros, Mohammad Akram, Samundra Regmi:
Solution of an integral equation in controlled rectangular metric spaces via weakly contractive mappings. J. Comput. Appl. Math. 454: 116187 (2025) - [j236]Chih-Wen Chang, Sania Qureshi, Ioannis K. Argyros, Francisco I. Chicharro, Amanullah Soomro:
A modified two-step optimal iterative method for solving nonlinear models in one and higher dimensions. Math. Comput. Simul. 229: 448-467 (2025) - 2024
- [j235]Ioannis K. Argyros, Santhosh George, Samundra Regmi, Christopher I. Argyros:
Hybrid Newton-like Inverse Free Algorithms for Solving Nonlinear Equations. Algorithms 17(4): 154 (2024) - [j234]Sania Qureshi, Francisco I. Chicharro, Ioannis K. Argyros, Amanullah Soomro, Jihan Alahmadi, Evren Hincal:
A New Optimal Numerical Root-Solver for Solving Systems of Nonlinear Equations Using Local, Semi-Local, and Stability Analysis. Axioms 13(6): 341 (2024) - [j233]Ioannis K. Argyros, Santhosh George, Samundra Regmi, Michael I. Argyros:
On the Kantorovich Theory for Nonsingular and Singular Equations. Axioms 13(6): 358 (2024) - [j232]Mohammad Akram, Salha Alshaikey, Umar Ishtiaq, Muhammad Farhan, Ioannis K. Argyros, Samundra Regmi:
Fixed-Point Results of Generalized (ϕ,Ψ)-Contractive Mappings in Partially Ordered Controlled Metric Spaces with an Application to a System of Integral Equations. Axioms 13(6): 415 (2024) - [j231]Ibrahim Alraddadi, Muhammad Din, Umar Ishtiaq, Mohammad Akram, Ioannis K. Argyros:
Enriched Z-Contractions and Fixed-Point Results with Applications to IFS. Axioms 13(8): 562 (2024) - [j230]Indra Bate, Muniyasamy Murugan, Santhosh George, Kedarnath Senapati, Ioannis K. Argyros, Samundra Regmi:
On Extending the Applicability of Iterative Methods for Solving Systems of Nonlinear Equations. Axioms 13(9): 601 (2024) - [j229]Chih-Wen Chang, Sania Qureshi, Ioannis K. Argyros, Khair Muhammad Saraz, Evren Hincal:
A Modified Fractional Newton's Solver. Axioms 13(10): 689 (2024) - [j228]Ramandeep Behl, Ioannis K. Argyros:
Larger convergence regions for an efficient two-step iterative method. Comput. Appl. Math. 43(1): 76 (2024) - [j227]Santhosh George, Ajil Kunnarath, Ramya Sadananda, P. Jidesh, Ioannis K. Argyros:
On obtaining order of convergence of Jarratt-like method without using Taylor series expansion. Comput. Appl. Math. 43(4): 246 (2024) - [j226]Ioannis K. Argyros, Santhosh George:
On a unified convergence analysis for Newton-type methods solving generalized equations with the Aubin property. J. Complex. 81: 101817 (2024) - [j225]Sania Qureshi, Ioannis K. Argyros, Amanullah Soomro, Krzysztof Gdawiec, Asif Ali Shaikh, Evren Hincal:
A new optimal root-finding iterative algorithm: local and semilocal analysis with polynomiography. Numer. Algorithms 95(4): 1715-1745 (2024) - [j224]Ioannis K. Argyros, Stepan Shakhno, Samundra Regmi, Halyna Yarmola, Michael I. Argyros:
Symmetric-Type Multi-Step Difference Methods for Solving Nonlinear Equations. Symmetry 16(3): 330 (2024) - [j223]Ramandeep Behl, Ioannis K. Argyros:
Convergence of a Family of Methods with Symmetric, Antisymmetric Parameters and Weight Functions. Symmetry 16(9): 1179 (2024) - 2023
- [j222]Ioannis K. Argyros, Stepan Shakhno, Samundra Regmi, Halyna Yarmola:
On the Semi-Local Convergence of Two Competing Sixth Order Methods for Equations in Banach Space. Algorithms 16(1): 2 (2023) - [j221]Manoj K. Singh, Ioannis K. Argyros, Arvind K. Singh:
Newton-like Normal S-iteration under Weak Conditions. Axioms 12(3): 283 (2023) - [j220]Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Ioannis K. Argyros, Samundra Regmi:
On Orthogonal Fuzzy Interpolative Contractions with Applications to Volterra Type Integral Equations and Fractional Differential Equations. Axioms 12(8): 725 (2023) - [j219]Khaleel Ahmad, Ghulam Murtaza, Salha Alshaikey, Umar Ishtiaq, Ioannis K. Argyros:
Common Fixed Point Results on a Double-Controlled Metric Space for Generalized Rational-Type Contractions with Application. Axioms 12(10): 941 (2023) - [j218]Samundra Regmi, Ioannis K. Argyros, Santhosh George, Michael I. Argyros:
Extended Kantorovich theory for solving nonlinear equations with applications. Comput. Appl. Math. 42(2) (2023) - [j217]Samundra Regmi, Ioannis K. Argyros, Stepan Shakhno, Halyna Yarmola:
Unified Convergence Criteria of Derivative-Free Iterative Methods for Solving Nonlinear Equations. Comput. 11(3): 49 (2023) - [j216]Santhosh George, Muhammed Saeed K, Ioannis K. Argyros, P. Jidesh:
An apriori parameter choice strategy and a fifth order iterative scheme for Lavrentiev regularization method. J. Appl. Math. Comput. 69(1): 1095-1115 (2023) - [j215]Ramya Sadananda, Santhosh George, Ajil Kunnarath, Jidesh Padikkal, Ioannis K. Argyros:
Enhancing the practicality of Newton-Cotes iterative method. J. Appl. Math. Comput. 69(4): 3359-3389 (2023) - [j214]Ioannis K. Argyros, Stepan Shakhno, Samundra Regmi, Halyna Yarmola:
On the complexity of a unified convergence analysis for iterative methods. J. Complex. 79: 101781 (2023) - [j213]Christopher I. Argyros, Michael I. Argyros, Ioannis K. Argyros, Ángel Alberto Magreñán, Íñigo Sarría Martínez de Mendivil:
Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields. J. Comput. Appl. Math. 426: 115072 (2023) - [j212]Krzysztof Gdawiec, Ioannis K. Argyros, Sania Qureshi, Amanullah Soomro:
An optimal homotopy continuation method: Convergence and visual analysis. J. Comput. Sci. 74: 102166 (2023) - [j211]Ioannis K. Argyros, Stepan Shakhno, Samundra Regmi, Halyna Yarmola:
Newton-Type Methods for Solving Equations in Banach Spaces: A Unified Approach. Symmetry 15(1): 15 (2023) - [j210]Umar Ishtiaq, Fahad Jahangeer, Doha A. Kattan, Ioannis K. Argyros:
Generalized Common Best Proximity Point Results in Fuzzy Metric Spaces with Application. Symmetry 15(8): 1501 (2023) - 2022
- [j209]Samundra Regmi, Ioannis K. Argyros, Santhosh George, Christopher I. Argyros:
Numerical Processes for Approximating Solutions of Nonlinear Equations. Axioms 11(7): 307 (2022) - [j208]Ioannis K. Argyros, Debasis Sharma, Christopher I. Argyros, Sanjaya Kumar Parhi, Shanta Kumari Sunanda:
Extended iterative schemes based on decomposition for nonlinear models. J. Appl. Math. Comput. 68(3): 1485-1504 (2022) - [j207]Ioannis K. Argyros:
Weaker convergence criteria for Traub's method. J. Complex. 69: 101615 (2022) - [j206]Ioannis K. Argyros, Santhosh George, Christopher I. Argyros:
On the complexity of convergence for high order iterative methods. J. Complex. 73: 101678 (2022) - [j205]Alejandro Moysi, Michael I. Argyros, Ioannis K. Argyros, Ángel Alberto Magreñán, Íñigo Sarría, Daniel González:
Local convergence comparison between frozen Kurchatov and Schmidt-Schwetlick-Kurchatov solvers with applications. J. Comput. Appl. Math. 404: 113392 (2022) - [j204]Jitsupa Deepho, Auwal Bala Abubakar, Maulana Malik, Ioannis K. Argyros:
Solving unconstrained optimization problems via hybrid CD-DY conjugate gradient methods with applications. J. Comput. Appl. Math. 405: 113823 (2022) - [j203]Samundra Regmi, Ioannis K. Argyros, Santhosh George, Christopher I. Argyros:
Extended Convergence of Three Step Iterative Methods for Solving Equations in Banach Space with Applications. Symmetry 14(7): 1484 (2022) - [j202]Ioannis K. Argyros, Samundra Regmi, Stepan Shakhno, Halyna Yarmola:
Perturbed Newton Methods for Solving Nonlinear Equations with Applications. Symmetry 14(10): 2206 (2022) - [j201]Krishnendu Remesh, Ioannis K. Argyros, Muhammed Saeed K, Santhosh George, Jidesh Padikkal:
Extending the Applicability of Cordero Type Iterative Method. Symmetry 14(12): 2495 (2022) - [j200]Ioannis K. Argyros, Stepan Shakhno, Samundra Regmi, Halyna Yarmola:
On the Convergence of Two-Step Kurchatov-Type Methods under Generalized Continuity Conditions for Solving Nonlinear Equations. Symmetry 14(12): 2548 (2022) - 2021
- [j199]Ioannis K. Argyros, Debasis Sharma, Christopher I. Argyros, Sanjaya Kumar Parhi, Shanta Kumari Sunanda, Michael I. Argyros:
Extended High Order Algorithms for Equations under the Same Set of Conditions. Algorithms 14(7): 207 (2021) - [j198]Abdolreza Amiri, Ioannis K. Argyros:
On the approximation of mth power divided differences preserving the local order of convergence. Appl. Math. Comput. 410: 126415 (2021) - [j197]Ioannis K. Argyros, Stepan Shakhno, Roman Iakymchuk, Halyna Yarmola, Michael I. Argyros:
Gauss-Newton-Secant Method for Solving Nonlinear Least Squares Problems under Generalized Lipschitz Conditions. Axioms 10(3): 158 (2021) - [j196]Habib Ur Rehman, Poom Kumam, Ioannis K. Argyros, Nasser Aedh Alreshidi:
Modified proximal-like extragradient methods for two classes of equilibrium problems in Hilbert spaces with applications. Comput. Appl. Math. 40(2) (2021) - [j195]Ioannis K. Argyros, Michael I. Argyros, Johan Ceballos, Mariana Ceballos, Daniel González:
Extensions on a local convergence result by Dennis and Schnabel for Newton's method with applications. Comput. Math. Methods 3(5) (2021) - [j194]Michael I. Argyros, Ioannis K. Argyros, Daniel González, Ángel Alberto Magreñán, Alejandro Moysi, Íñigo Sarría:
Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis. Comput. Math. Methods 3(6) (2021) - [j193]Ramandeep Behl, Ioannis K. Argyros, Christopher I. Argyros:
On the local convergence of efficient Newton-type solvers with frozen derivatives for nonlinear equations. Comput. Math. Methods 3(6) (2021) - [j192]Hongmin Ren, Ioannis K. Argyros:
On the complexity of extending the convergence ball of Wang's method for finding a zero of a derivative. J. Complex. 64: 101526 (2021) - [j191]Kanikar Muangchoo, Nasser Aedh Alreshidi, Ioannis K. Argyros:
Approximation Results for Variational Inequalities Involving Pseudomonotone Bifunction in Real Hilbert Spaces. Symmetry 13(2): 182 (2021) - [j190]Harish Bhatt, Janak Joshi, Ioannis K. Argyros:
Fourier Spectral High-Order Time-Stepping Method for Numerical Simulation of the Multi-Dimensional Allen-Cahn Equations. Symmetry 13(2): 245 (2021) - [j189]Ioannis K. Argyros, Debasis Sharma, Christopher I. Argyros, Sanjaya Kumar Parhi, Shanta Kumari Sunanda:
A Family of Fifth and Sixth Convergence Order Methods for Nonlinear Models. Symmetry 13(4): 715 (2021) - [j188]Mahmoud S. Alrawashdeh, Seba A. Migdady, Ioannis K. Argyros:
An Efficient Mechanism to Solve Fractional Differential Equations Using Fractional Decomposition Method. Symmetry 13(6): 984 (2021) - [j187]Nopparat Wairojjana, Ioannis K. Argyros, Meshal Shutaywi, Wejdan Deebani, Christopher I. Argyros:
A Class of Novel Mann-Type Subgradient Extragradient Algorithms for Solving Quasimonotone Variational Inequalities. Symmetry 13(7): 1108 (2021) - [j186]Ramandeep Behl, Ioannis K. Argyros, Fouad Othman Mallawi, Christopher I. Argyros:
Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences. Symmetry 13(7): 1162 (2021) - [j185]Christopher I. Argyros, Ioannis K. Argyros, Janak Joshi, Samundra Regmi, Santhosh George:
On the Semi-Local Convergence of an Ostrowski-Type Method for Solving Equations. Symmetry 13(12): 2281 (2021) - 2020
- [j184]Janak Raj Sharma, Sunil Kumar, Ioannis K. Argyros:
Local Convergence of an Efficient Multipoint Iterative Method in Banach Space. Algorithms 13(1): 25 (2020) - [j183]Samundra Regmi, Ioannis K. Argyros, Santhosh George:
Local Comparison between Two Ninth Convergence Order Algorithms for Equations. Algorithms 13(6): 147 (2020) - [j182]Ioannis K. Argyros, Johan Ceballos, Daniel González, José Manuel Gutiérrez Jiménez:
Extending the applicability of Newton's method for a class of boundary value problems using the shooting method. Appl. Math. Comput. 384: 125378 (2020) - [j181]Nopparat Wairojjana, Habib Ur Rehman, Ioannis K. Argyros, Nuttapol Pakkaranang:
An Accelerated Extragradient Method for Solving Pseudomonotone Equilibrium Problems with Applications. Axioms 9(3): 99 (2020) - [j180]Ioannis K. Argyros, Stepan Shakhno, Halyna Yarmola:
Improving Convergence Analysis of the Newton-Kurchatov Method under Weak Conditions. Comput. 8(1): 8 (2020) - [j179]Gus I. Argyros, Michael I. Argyros, Samundra Regmi, Ioannis K. Argyros, Santhosh George:
On the Solution of Equations by Extended Discretization. Comput. 8(3): 69 (2020) - [j178]Ali Saleh Alshomrani, Ramandeep Behl, Ioannis K. Argyros:
Ball convergence for a family of eight-order iterative schemes under hypotheses only of the first-order derivative. Int. J. Comput. Math. 97(1-2): 444-454 (2020) - [j177]Ioannis K. Argyros, Santhosh George:
Convergence analysis for single point Newton-type iterative schemes. J. Appl. Math. Comput. 62(1-2): 55-65 (2020) - [j176]Ioannis K. Argyros, Santhosh George:
On the complexity of extending the convergence region for Traub's method. J. Complex. 56 (2020) - [j175]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, M. A. Hernández-Verón, Dionisio F. Yáñez:
On the local and semilocal convergence of a parameterized multi-step Newton method. J. Comput. Appl. Math. 376: 112843 (2020) - [j174]Ioannis K. Argyros, Santhosh George, Kedarnath Senapati:
Extending the applicability of the inexact Newton-HSS method for solving large systems of nonlinear equations. Numer. Algorithms 83(1): 333-353 (2020) - [j173]Ramandeep Behl, Ioannis K. Argyros:
Local Convergence of Solvers with Eighth Order Having Weak Conditions. Symmetry 12(1): 70 (2020) - [j172]Alejandro Moysi, Ioannis K. Argyros, Samundra Regmi, Daniel González, Ángel Alberto Magreñán, Juan Antonio Sicilia:
Convergence and Dynamics of a Higher-Order Method. Symmetry 12(3): 420 (2020) - [j171]Habib Ur Rehman, Poom Kumam, Ioannis K. Argyros, Wejdan Deebani, Wiyada Kumam:
Inertial Extra-Gradient Method for Solving a Family of Strongly Pseudomonotone Equilibrium Problems in Real Hilbert Spaces with Application in Variational Inequality Problem. Symmetry 12(4): 503 (2020) - [j170]Habib Ur Rehman, Poom Kumam, Ioannis K. Argyros, Nasser Aedh Alreshidi, Wiyada Kumam, Wachirapong Jirakitpuwapat:
A Self-Adaptive Extra-Gradient Methods for a Family of Pseudomonotone Equilibrium Programming with Application in Different Classes of Variational Inequality Problems. Symmetry 12(4): 523 (2020) - [j169]Ioannis K. Argyros, Stepan Shakhno, Halyna Yarmola:
Method of Third-Order Convergence with Approximation of Inverse Operator for Large Scale Systems. Symmetry 12(6): 978 (2020) - [j168]Ioannis K. Argyros, Stepan Shakhno, Halyna Yarmola:
Extending the Convergence Domain of Methods of Linear Interpolation for the Solution of Nonlinear Equations. Symmetry 12(7): 1093 (2020) - 2019
- [j167]Ioannis K. Argyros, Ramandeep Behl, J. A. Tenreiro Machado, Ali Saleh Alshomrani:
Local convergence of iterative methods for solving equations and system of equations using weight function techniques. Appl. Math. Comput. 347: 891-902 (2019) - [j166]Ioannis K. Argyros, Santhosh George, Ángel Alberto Magreñán:
Improved semi-local convergence of the Newton-HSS method for solving large systems of equations. Appl. Math. Lett. 98: 29-35 (2019) - [j165]C. D. Sreedeep, Santhosh George, Ioannis K. Argyros:
Extended Newton-type iteration for nonlinear ill-posed equations in Banach space. J. Appl. Math. Comput. 60(1-2): 435-453 (2019) - [j164]Janak Raj Sharma, Sunil Kumar, Ioannis K. Argyros:
Generalized Kung-Traub method and its multi-step iteration in Banach spaces. J. Complex. 54 (2019) - [j163]Ioannis K. Argyros, Santhosh George:
Unified convergence analysis of frozen Newton-like methods under generalized conditions. J. Comput. Appl. Math. 347: 95-107 (2019) - [j162]Ioannis K. Argyros, Gilson N. Silva:
Extending the Kantorovich's theorem on Newton's method for solving strongly regular generalized equation. Optim. Lett. 13(1): 213-226 (2019) - [j161]Ramandeep Behl, Ioannis K. Argyros, J. A. Tenreiro Machado, Ali Saleh Alshomrani:
Local Convergence of a Family of Weighted-Newton Methods. Symmetry 11(1): 103 (2019) - [j160]Ioannis K. Argyros, Stepan Shakhno, Halyna Yarmola:
Two-Step Solver for Nonlinear Equations. Symmetry 11(2): 128 (2019) - [j159]Janak Raj Sharma, Deepak Kumar, Ioannis K. Argyros:
An Efficient Class of Traub-Steffensen-Like Seventh Order Multiple-Root Solvers with Applications. Symmetry 11(4): 518 (2019) - [j158]Ramandeep Behl, Ioannis K. Argyros, Fouad Othman Mallawi, J. A. Tenreiro Machado:
Derivative Free Fourth Order Solvers of Equations with Applications in Applied Disciplines. Symmetry 11(4): 586 (2019) - [j157]Janak Raj Sharma, Sunil Kumar, Ioannis K. Argyros:
Development of Optimal Eighth Order Derivative-Free Methods for Multiple Roots of Nonlinear Equations. Symmetry 11(6): 766 (2019) - [j156]Ioannis K. Argyros, Santhosh George, Chandhini Godavarma, Ángel Alberto Magreñán:
Extended Convergence Analysis of the Newton-Hermitian and Skew-Hermitian Splitting Method. Symmetry 11(8): 981 (2019) - [j155]Rania A. Alharbey, Ioannis K. Argyros, Ramandeep Behl:
Ball Convergence for Combined Three-Step Methods Under Generalized Conditions in Banach Space. Symmetry 11(8): 1002 (2019) - 2018
- [j154]Ioannis K. Argyros, Stefan Maruster:
Predetermining the number of periodic steps in multi-step Newton-like methods for solving equations and systems of equations. Appl. Math. Comput. 329: 420-431 (2018) - [j153]Ioannis K. Argyros, J. A. Ezquerro, M. A. Hernández-Verón, Ángel Alberto Magreñán:
Extending the domain of starting points for Newton's method under conditions on the second derivative. J. Comput. Appl. Math. 340: 1-10 (2018) - [j152]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, M. A. Hernández-Verón, Eulalia Martínez:
On the local convergence study for an efficient k-step iterative method. J. Comput. Appl. Math. 343: 753-761 (2018) - [j151]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, M. A. Hernández-Verón:
On two high-order families of frozen Newton-type methods. Numer. Linear Algebra Appl. 25(1) (2018) - 2017
- [j150]Ioannis K. Argyros, Janak Raj Sharma, Deepak Kumar:
Extending the Applicability of the MMN-HSS Method for Solving Systems of Nonlinear Equations under Generalized Conditions. Algorithms 10(2): 54 (2017) - [j149]Sergio Amat, Ioannis K. Argyros, Miguel Ángel Hernández, Natalia Romero Álvarez:
Expanding the Applicability of Some High Order Househölder-Like Methods. Algorithms 10(2): 64 (2017) - [j148]Ioannis K. Argyros, Ángel Alberto Magreñán:
Extending the applicability of the local and semilocal convergence of Newton's method. Appl. Math. Comput. 292: 349-355 (2017) - [j147]Ioannis K. Argyros, Munish Kansal, Vinay Kanwar, Sugandha Bajaj:
Higher-order derivative-free families of Chebyshev-Halley type methods with or without memory for solving nonlinear equations. Appl. Math. Comput. 315: 224-245 (2017) - [j146]George A. Anastassiou, Ioannis K. Argyros, Sunil Kumar:
Monotone Convergence of Extended Iterative Methods and Fractional Calculus with Applications. Fundam. Informaticae 151(1-4): 241-253 (2017) - [j145]Ioannis K. Argyros, Santhosh George:
Local convergence of a fast Steffensen-type method on Banach space under weak conditions. Int. J. Comput. Sci. Math. 8(6): 495-505 (2017) - [j144]Ioannis K. Argyros, Daniel González:
Local convergence of Cauchy-type methods under hypotheses on the first derivative. Int. J. Comput. Vis. Robotics 7(6): 613-622 (2017) - [j143]Ioannis K. Argyros, Gilson N. Silva:
Extended Traub-Woźniakowski convergence and complexity of Newton iteration in Banach space. J. Complex. 43: 38-50 (2017) - [j142]Ioannis K. Argyros, Alicia Cordero, Ángel Alberto Magreñán, Juan R. Torregrosa:
Third-degree anomalies of Traub's method. J. Comput. Appl. Math. 309: 511-521 (2017) - [j141]Ioannis K. Argyros, Alicia Cordero, Ángel Alberto Magreñán, Juan R. Torregrosa:
On the convergence of a higher order family of methods and its dynamics. J. Comput. Appl. Math. 309: 542-562 (2017) - [j140]Ioannis K. Argyros, Ángel Alberto Magreñán, Juan Antonio Sicilia:
Improving the domain of parameters for Newton's method with applications. J. Comput. Appl. Math. 318: 124-135 (2017) - [j139]Ioannis K. Argyros, Santhosh George:
Local convergence of Jarratt-Type Methods with Less Computation of inversion under Weak conditions. Math. Model. Anal. 22(2): 228-236 (2017) - [j138]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, Ángel Alberto Magreñán:
Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions. Numer. Algorithms 74(2): 371-391 (2017) - [j137]Sunil Kumar, Amit Kumar, Ioannis K. Argyros:
A new analysis for the Keller-Segel model of fractional order. Numer. Algorithms 75(1): 213-228 (2017) - [j136]Ioannis K. Argyros, M. A. Hernández-Verón, M. Jóse Rubio:
Convergence of Steffensen's method for non-differentiable operators. Numer. Algorithms 75(1): 229-244 (2017) - [j135]Ioannis K. Argyros, Santhosh George:
On the convergence of Newton-like methods using restricted domains. Numer. Algorithms 75(3): 553-567 (2017) - 2016
- [j134]Ioannis K. Argyros, Ramandeep Behl, Sandile Sydney Motsa:
Local Convergence Analysis of an Eighth Order Scheme Using Hypothesis Only on the First Derivative. Algorithms 9(4): 65 (2016) - [j133]Ioannis K. Argyros, Hongmin Ren:
On the Kurchatov method for solving equations under weak conditions. Appl. Math. Comput. 273: 98-113 (2016) - [j132]Ramandeep Behl, Ioannis K. Argyros, Sandile Sydney Motsa:
A new highly efficient and optimal family of eighth-order methods for solving nonlinear equations. Appl. Math. Comput. 282: 175-186 (2016) - [j131]Ioannis K. Argyros, Santhosh George:
Unified convergence domains of Newton-like methods for solving operator equations. Appl. Math. Comput. 286: 106-114 (2016) - [j130]Ioannis K. Argyros, Santhosh George:
On a result by Dennis and Schnabel for Newton's method: Further improvements. Appl. Math. Lett. 55: 49-53 (2016) - [j129]Ioannis K. Argyros, Ángel Alberto Magreñán Ruiz:
Local Convergence and the Dynamics of a Two-Step Newton-Like Method. Int. J. Bifurc. Chaos 26(5): 1630012:1-1630012:18 (2016) - [j128]Ioannis K. Argyros, Ramandeep Behl, Sandile Sydney Motsa:
Newton's method on generalized Banach spaces. J. Complex. 35: 16-28 (2016) - [j127]Ioannis K. Argyros, Saïd Hilout:
The majorant method in the theory of Newton-Kantorovich approximations and generalized Lipschitz conditions. J. Comput. Appl. Math. 291: 332-347 (2016) - [j126]Ángel Alberto Magreñán, Ioannis K. Argyros:
On the local convergence and the dynamics of Chebyshev-Halley methods with six and eight order of convergence. J. Comput. Appl. Math. 298: 236-251 (2016) - [j125]Ángel Alberto Magreñán, Ioannis K. Argyros:
New improved convergence analysis for the secant method. Math. Comput. Simul. 119: 161-170 (2016) - [j124]Ioannis K. Argyros, Ángel Alberto Magreñán:
A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71(1): 1-23 (2016) - [j123]Ángel Alberto Magreñán, Ioannis K. Argyros:
Improved convergence analysis for Newton-like methods. Numer. Algorithms 71(4): 811-826 (2016) - 2015
- [j122]Ioannis K. Argyros, Ramandeep Behl, Sandile Sydney Motsa:
Local Convergence of an Optimal Eighth Order Method under Weak Conditions. Algorithms 8(3): 645-655 (2015) - [j121]George A. Anastassiou, Ioannis K. Argyros:
Newton-Type Methods on Generalized Banach Spaces and Applications in Fractional Calculus. Algorithms 8(4): 832-849 (2015) - [j120]Ioannis K. Argyros, Ramandeep Behl, Sandile Sydney Motsa:
Local Convergence of an Efficient High Convergence Order Method Using Hypothesis Only on the First Derivative. Algorithms 8(4): 1076-1087 (2015) - [j119]Ioannis K. Argyros, Alicia Cordero, Ángel Alberto Magreñán, Juan R. Torregrosa:
On the convergence of a Damped Secant method with modified right-hand side vector. Appl. Math. Comput. 252: 315-323 (2015) - [j118]Ioannis K. Argyros, Ángel Alberto Magreñán:
On the convergence of an optimal fourth-order family of methods and its dynamics. Appl. Math. Comput. 252: 336-346 (2015) - [j117]Ioannis K. Argyros, Santhosh George:
Enlarging the convergence ball of the method of parabola for finding zero of derivatives. Appl. Math. Comput. 256: 68-74 (2015) - [j116]Hongmin Ren, Ioannis K. Argyros:
On the convergence of King-Werner-type methods of order 1 + √2 free of derivatives. Appl. Math. Comput. 256: 148-159 (2015) - [j115]Ángel Alberto Magreñán, Ioannis K. Argyros:
New semilocal and local convergence analysis for the Secant method. Appl. Math. Comput. 262: 298-307 (2015) - [j114]Ioannis K. Argyros, Sanjay Kumar Khattri:
Weak convergence conditions for the Newton's method in Banach space using general majorizing sequences. Appl. Math. Comput. 263: 59-72 (2015) - [j113]Ioannis K. Argyros, Ángel Alberto Magreñán:
On the convergence of inexact two-point Newton-like methods on Banach spaces. Appl. Math. Comput. 265: 893-902 (2015) - [j112]Ioannis K. Argyros, Alicia Cordero, Ángel Alberto Magreñán, Juan R. Torregrosa:
On the convergence of a damped Newton-like method with modified right hand side vector. Appl. Math. Comput. 266: 927-936 (2015) - [j111]Ioannis K. Argyros, Ángel Alberto Magreñán:
Expanding the applicability of the Secant method under weaker conditions. Appl. Math. Comput. 266: 1000-1012 (2015) - [j110]Ioannis K. Argyros, Santhosh George:
Ball convergence comparison between three iterative methods in Banach space under hypothese only on the first derivative. Appl. Math. Comput. 266: 1031-1037 (2015) - [j109]Ioannis K. Argyros, Ángel Alberto Magreñán:
Improved local convergence analysis of the Gauss-Newton method under a majorant condition. Comput. Optim. Appl. 60(2): 423-439 (2015) - [j108]Ioannis K. Argyros, Daniel González:
Local Convergence for an Improved Jarratt-type Method in Banach Space. Int. J. Interact. Multim. Artif. Intell. 3(4): 20-25 (2015) - [j107]Ioannis K. Argyros, Santhosh George:
Ball Convergence for Steffensen-type Fourth-order Methods. Int. J. Interact. Multim. Artif. Intell. 3(4): 37-42 (2015) - [j106]Daya Ram Sahu, Y. J. Cho, Ravi P. Agarwal, Ioannis K. Argyros:
Accessibility of solutions of operator equations by Newton-like methods. J. Complex. 31(4): 637-657 (2015) - [j105]Ioannis K. Argyros, Santhosh George, Ángel Alberto Magreñán:
Local convergence for multi-point-parametric Chebyshev-Halley-type methods of high convergence order. J. Comput. Appl. Math. 282: 215-224 (2015) - [j104]Ioannis K. Argyros, Hongmin Ren:
On the convergence of efficient King-Werner-type methods of order 1+√2. J. Comput. Appl. Math. 285: 169-180 (2015) - [j103]Ioannis K. Argyros, Ángel Alberto Magreñán:
Extended convergence results for the Newton-Kantorovich iteration. J. Comput. Appl. Math. 286: 54-67 (2015) - [j102]Ioannis K. Argyros, Ángel Alberto Magreñán Ruiz:
Extending the convergence domain of the Secant and Moser method in Banach Space. J. Comput. Appl. Math. 290: 114-124 (2015) - [j101]Ioannis K. Argyros, Miguel Ángel Hernández-Verón, Saïd Hilout, Natalia Romero Álvarez:
Directional Chebyshev-type methods for solving equations. Math. Comput. 84(292): 815-830 (2015) - [j100]Ángel Alberto Magreñán, Ioannis K. Argyros:
An extension of a theorem by Wang for Smale's α-theory and applications. Numer. Algorithms 68(1): 47-60 (2015) - 2014
- [j99]Ioannis K. Argyros, Saïd Hilout, Ángel Alberto Magreñán:
Robust semi-local convergence analysis for inexact Newton method. Appl. Math. Comput. 227: 741-754 (2014) - [j98]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, Rodrigo A. Castro, Saïd Hilout, Sergio Plaza:
Newton-type methods on Riemannian manifolds under Kantorovich-type conditions. Appl. Math. Comput. 227: 762-787 (2014) - [j97]Ioannis K. Argyros, Daniel González:
Extending the applicability of Newton's method for k-Fréchet differentiable operators in Banach spaces. Appl. Math. Comput. 234: 167-178 (2014) - [j96]Ioannis K. Argyros, Ángel Alberto Magreñán:
Local convergence analysis of proximal Gauss-Newton method for penalized nonlinear least squares problems. Appl. Math. Comput. 241: 401-408 (2014) - [j95]Ángel Alberto Magreñán, Ioannis K. Argyros:
Optimizing the applicability of a theorem by F. Potra for Newton-like methods. Appl. Math. Comput. 242: 612-623 (2014) - [j94]Ioannis K. Argyros, Y. J. Cho, Sanjay Kumar Khattri:
On the convergence of Broyden's method in Hilbert spaces. Appl. Math. Comput. 242: 945-951 (2014) - [j93]Ioannis K. Argyros, Ángel Alberto Magreñán:
Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds. Appl. Math. Comput. 249: 453-467 (2014) - [j92]Ioannis K. Argyros, Saïd Hilout:
Weaker convergence for Newton's method under Hölder differentiability. Int. J. Comput. Math. 91(6): 1351-1369 (2014) - [j91]Ioannis K. Argyros, Daniel González, Ángel Alberto Magreñán:
Majorizing sequences for Newton's method under centred conditions for the derivative. Int. J. Comput. Math. 91(12): 2568-2583 (2014) - [j90]Ioannis K. Argyros, Santhosh George, Jidesh Pacheeripadikkal:
Inverse Free Iterative Methods for Nonlinear Ill-Posed Operator Equations. Int. J. Math. Math. Sci. 2014: 754154:1-754154:8 (2014) - [j89]Juan R. Torregrosa, Ioannis K. Argyros, Changbum Chun, Alicia Cordero, Fazlollah Soleymani:
Iterative Methods for Nonlinear Equations or Systems and Their Applications 2014. J. Appl. Math. 2014: 293263:1-293263:2 (2014) - [j88]Ángel Alberto Magreñán Ruiz, Ioannis K. Argyros:
Two-step Newton methods. J. Complex. 30(4): 533-553 (2014) - [j87]Ioannis K. Argyros, Sanjay Kumar Khattri:
Weaker Kantorovich type criteria for inexact Newton methods. J. Comput. Appl. Math. 261: 103-117 (2014) - [j86]Ioannis K. Argyros, Saïd Hilout, Sanjay Kumar Khattri:
Expanding the applicability of Newton's method using Smale's α-theory. J. Comput. Appl. Math. 261: 183-200 (2014) - [j85]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, Saïd Hilout:
Expanding the Applicability of High-Order Traub-Type Iterative Procedures. J. Optim. Theory Appl. 161(3): 837-852 (2014) - 2013
- [j84]Sergio Amat, Ioannis K. Argyros, Sonia Busquier, Rodrigo A. Castro, Saïd Hilout, Sergio Plaza:
On a bilinear operator free third order method on Riemannian manifolds. Appl. Math. Comput. 219(14): 7429-7444 (2013) - [j83]Ioannis K. Argyros, Saïd Hilout:
Extending the applicability of Newton's method on Lie groups. Appl. Math. Comput. 219(20): 10355-10365 (2013) - [j82]Ioannis K. Argyros, Santhosh George:
Expanding the applicability of a modified Gauss-Newton method for solving nonlinear ill-posed problems. Appl. Math. Comput. 219(21): 10518-10526 (2013) - [j81]Hongmin Ren, Long Wu, Weihong Bi, Ioannis K. Argyros:
Solving nonlinear equations system via an efficient genetic algorithm with symmetric and harmonious individuals. Appl. Math. Comput. 219(23): 10967-10973 (2013) - [j80]Ioannis K. Argyros, Sanjay Kumar Khattri, Saïd Hilout:
Expanding the applicability of Inexact Newton Methods under Smale's (α, γ)-theory. Appl. Math. Comput. 224: 224-237 (2013) - [j79]Ioannis K. Argyros, Saïd Hilout:
On an improved convergence analysis of Newton's method. Appl. Math. Comput. 225: 372-386 (2013) - [j78]Ioannis K. Argyros, Hongmin Ren:
Efficient Steffensen-type algorithms for solving nonlinear equations. Int. J. Comput. Math. 90(3): 691-704 (2013) - [j77]Juan R. Torregrosa, Ioannis K. Argyros, Changbum Chun, Alicia Cordero, Fazlollah Soleymani:
Iterative Methods for Nonlinear Equations or Systems and Their Applications. J. Appl. Math. 2013: 656953:1-656953:2 (2013) - [j76]Ioannis K. Argyros, Sanjay Kumar Khattri:
On the Secant method. J. Complex. 29(6): 454-471 (2013) - [j75]Ioannis K. Argyros, Saïd Hilout:
On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245: 1-9 (2013) - [j74]Ioannis K. Argyros, Saïd Hilout:
Improved local convergence analysis of inexact Gauss-Newton like methods under the majorant condition in Banach spaces. J. Frankl. Inst. 350(6): 1531-1544 (2013) - [j73]Ioannis K. Argyros, Saïd Hilout:
Directional Secant-Type Methods for Solving Equations. J. Optim. Theory Appl. 157(2): 462-485 (2013) - [j72]Ioannis K. Argyros, Saïd Hilout:
Estimating upper bounds on the limit points of majorizing sequences for Newton's method. Numer. Algorithms 62(1): 115-132 (2013) - [j71]Ioannis K. Argyros, Daniel González:
Unified majorizing sequences for Traub-type multipoint iterative procedures. Numer. Algorithms 64(3): 549-565 (2013) - 2012
- [j70]Hongmin Ren, Ioannis K. Argyros:
Local convergence of efficient Secant-type methods for solving nonlinear equations. Appl. Math. Comput. 218(14): 7655-7664 (2012) - [j69]Hongmin Ren, Ioannis K. Argyros:
On the semi-local convergence of Halley's method under a center-Lipschitz condition on the second Fréchet derivative. Appl. Math. Comput. 218(23): 11488-11495 (2012) - [j68]Ioannis K. Argyros, Saïd Hilout:
On the semilocal convergence of damped Newton's method. Appl. Math. Comput. 219(5): 2808-2824 (2012) - [j67]Ioannis K. Argyros, Saïd Hilout:
New conditions for the convergence of Newton-like methods and applications. Appl. Math. Comput. 219(6): 3279-3289 (2012) - [j66]Ioannis K. Argyros, Saïd Hilout:
Weaker conditions for the convergence of Newton's method. J. Complex. 28(3): 364-387 (2012) - [j65]Ioannis K. Argyros, Saïd Hilout:
Majorizing sequences for iterative procedures in Banach spaces. J. Complex. 28(5-6): 562-581 (2012) - [j64]Ioannis K. Argyros, Saïd Hilout:
Improved local convergence of Newton's method under weak majorant condition. J. Comput. Appl. Math. 236(7): 1892-1902 (2012) - [j63]Ioannis K. Argyros, Saïd Hilout:
Majorizing sequences for iterative methods. J. Comput. Appl. Math. 236(7): 1947-1960 (2012) - [j62]Hongmin Ren, Ioannis K. Argyros:
Improved local analysis for a certain class of iterative methods with cubic convergence. Numer. Algorithms 59(4): 505-521 (2012) - [j61]Ioannis K. Argyros, Saïd Hilout:
Secant-type methods and nondiscrete induction. Numer. Algorithms 61(3): 397-412 (2012) - 2011
- [j60]Sanjay Kumar Khattri, Ioannis K. Argyros:
Sixth order derivative free family of iterative methods. Appl. Math. Comput. 217(12): 5500-5507 (2011) - [j59]Ioannis K. Argyros, Saïd Hilout:
Convergence of Directional Methods under mild differentiability and applications. Appl. Math. Comput. 217(21): 8731-8746 (2011) - [j58]Ioannis K. Argyros, Saïd Hilout:
Weak convergence conditions for Inexact Newton-type methods. Appl. Math. Comput. 218(6): 2800-2809 (2011) - [j57]Ioannis K. Argyros, Saïd Hilout:
Extending the applicability of Secant methods and nondiscrete induction. Appl. Math. Comput. 218(7): 3238-3246 (2011) - [j56]Yeol Je Cho, Ioannis K. Argyros, Saïd Hilout:
Extended sufficient semilocal convergence for the Secant method. Comput. Math. Appl. 62(2): 599-610 (2011) - [j55]Ioannis K. Argyros, Saïd Hilout:
A unifying theorem for Newton's method on spaces with a convergence structure. J. Complex. 27(1): 39-54 (2011) - [j54]Ioannis K. Argyros, Hongmin Ren:
Kantorovich-type semilocal convergence analysis for inexact Newton methods. J. Comput. Appl. Math. 235(9): 2993-3005 (2011) - [j53]Ioannis K. Argyros, J. A. Ezquerro, José Manuel Gutiérrez Jiménez, Miguel Ángel Hernández-Verón, Saïd Hilout:
On the semilocal convergence of efficient Chebyshev-Secant-type methods. J. Comput. Appl. Math. 235(10): 3195-3206 (2011) - [j52]Ioannis K. Argyros:
A semilocal convergence analysis for directional Newton methods. Math. Comput. 80(273): 327-343 (2011) - [j51]Ioannis K. Argyros, Saïd Hilout:
On the solution of systems of equations with constant rank derivatives. Numer. Algorithms 57(2): 235-253 (2011) - [j50]Ioannis K. Argyros, Saïd Hilout:
Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions. Numer. Algorithms 58(1): 23-52 (2011) - [j49]Hongmin Ren, Ioannis K. Argyros, Saïd Hilout:
A derivative free iterative method for solving least squares problems. Numer. Algorithms 58(4): 555-571 (2011) - 2010
- [j48]Ioannis K. Argyros, Yeol Je Cho, Saïd Hilout:
On the midpoint method for solving equations. Appl. Math. Comput. 216(8): 2321-2332 (2010) - [j47]Hongmin Ren, Ioannis K. Argyros:
Convergence radius of the modified Newton method for multiple zeros under Hölder continuous derivative. Appl. Math. Comput. 217(2): 612-621 (2010) - [j46]Hongmin Ren, Ioannis K. Argyros:
Local convergence of a secant type method for solving least squares problems. Appl. Math. Comput. 217(8): 3816-3824 (2010) - [j45]Jinhai Chen, Ioannis K. Argyros:
Improved results on estimating and extending the radius of an attraction ball. Appl. Math. Lett. 23(4): 404-408 (2010) - [j44]Yeol Je Cho, Ioannis K. Argyros, Narin Petrot:
Approximation methods for common solutions of generalized equilibrium, systems of nonlinear variational inequalities and fixed point problems. Comput. Math. Appl. 60(8): 2292-2301 (2010) - [j43]Ioannis K. Argyros, Saïd Hilout:
A unified approach for the convergence of certain numerical algorithms, using recurrent functions. Computing 90(3-4): 131-164 (2010) - [j42]Ioannis K. Argyros:
On the convergence region of Newton's method under Hölder continuity conditions. Int. J. Comput. Math. 87(2): 317-326 (2010) - [j41]Ioannis K. Argyros:
An improved convergence analysis for the Newton-Kantorovich method using recurrence relations. Int. J. Comput. Math. 87(3): 642-652 (2010) - [j40]Ioannis K. Argyros, Saïd Hilout:
On the convergence of Newton-type methods using recurrent functions. Int. J. Comput. Math. 87(14): 3273-3296 (2010) - [j39]Ioannis K. Argyros, Saïd Hilout:
Improved generalized differentiability conditions for Newton-like methods. J. Complex. 26(3): 316-333 (2010) - [j38]Ioannis K. Argyros, Saïd Hilout:
Inexact Newton-type methods. J. Complex. 26(6): 577-590 (2010) - [j37]Jinhai Chen, Ioannis K. Argyros, Ravi P. Agarwal:
Majorizing functions and two-point Newton-type methods. J. Comput. Appl. Math. 234(5): 1473-1484 (2010) - [j36]Ioannis K. Argyros, Saïd Hilout:
Extending the Newton-Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 234(10): 2993-3006 (2010) - [j35]Hongmin Ren, Ioannis K. Argyros:
On the local convergence of inexact Newton-type methods under residual control-type conditions. J. Comput. Appl. Math. 235(1): 218-228 (2010) - [j34]Ioannis K. Argyros:
On a class of secant-like methods for solving nonlinear equations. Numer. Algorithms 54(4): 485-501 (2010) - [j33]Ioannis K. Argyros, Saïd Hilout:
A Kantorovich-type convergence analysis of the Newton-Josephy method for solving variational inequalities. Numer. Algorithms 55(4): 447-466 (2010) - [j32]Ioannis K. Argyros, Saïd Hilout:
A convergence analysis for directional two-step Newton methods. Numer. Algorithms 55(4): 503-528 (2010) - 2009
- [j31]Hongmin Ren, Ioannis K. Argyros:
On convergence of the modified Newton's method under Hölder continuous Fréchet derivative. Appl. Math. Comput. 213(2): 440-448 (2009) - [j30]Ioannis K. Argyros:
On Newton's method for solving equations containing Fréchet-differentiable operators of order at least two. Appl. Math. Comput. 215(4): 1553-1560 (2009) - [j29]Ioannis K. Argyros, Jinhai Chen:
On local convergence of a Newton-type method in Banach space. Int. J. Comput. Math. 86(8): 1366-1374 (2009) - [j28]Ioannis K. Argyros, Saïd Hilout:
On the weakening of the convergence of Newton's method using recurrent functions. J. Complex. 25(6): 530-543 (2009) - [j27]Ioannis K. Argyros, Hongmin Ren:
On the convergence of modified Newton methods for solving equations containing a non-differentiable term. J. Comput. Appl. Math. 231(2): 897-906 (2009) - [j26]Ioannis K. Argyros, Yeol Je Cho, Xiaolong Qin:
On the implicit iterative process for strictly pseudo-contractive mappings in Banach spaces. J. Comput. Appl. Math. 233(2): 208-216 (2009) - [j25]Ioannis K. Argyros, Hongmin Ren:
On an improved local convergence analysis for the Secant method. Numer. Algorithms 52(2): 257-271 (2009) - [j24]Ioannis K. Argyros:
On Ulm's method using divided differences of order one. Numer. Algorithms 52(3): 295-320 (2009) - [j23]Livinus Ugochukwu Uko, Ioannis K. Argyros:
Generalized equations, variational inequalities and a weak Kantorovich theorem. Numer. Algorithms 52(3): 321-333 (2009) - [j22]Ioannis K. Argyros, Saïd Hilout:
On the convergence of Newton-type methods under mild differentiability conditions. Numer. Algorithms 52(4): 701-726 (2009) - 2008
- [j21]Ioannis K. Argyros, Saïd Hilout:
Local convergence of Newton-like methods for generalized equations. Appl. Math. Comput. 197(2): 507-514 (2008) - [j20]Ioannis K. Argyros, Livinus Ugochukwu Uko:
On the convergence of the midpoint method. Numer. Algorithms 47(2): 157-167 (2008) - [j19]Ioannis K. Argyros, Saïd Hilout:
A Fréchet derivative-free cubically convergent method for set-valued maps. Numer. Algorithms 48(4): 361-371 (2008) - 2007
- [j18]Ioannis K. Argyros:
Improved convergence and complexity analysis of Newton's method for solving equations. Int. J. Comput. Math. 84(1): 67-73 (2007) - [j17]Ioannis K. Argyros:
On a non-smooth version of Newton's method based on Hölderian assumption. Int. J. Comput. Math. 84(12): 1747-1756 (2007) - 2005
- [j16]Ioannis K. Argyros:
On a two-point Newton-like method of convergent order two. Int. J. Comput. Math. 82(2): 219-233 (2005) - [j15]Ioannis K. Argyros:
A new iterative method of asymptotic order 1+sqrt(2) for the computation of fixed points. Int. J. Comput. Math. 82(11): 1413-1428 (2005) - 2004
- [j14]Ioannis K. Argyros:
Improved convergence analysis for the Secant method based on a certain type of recurrence relations. Int. J. Comput. Math. 81(5): 629-637 (2004) - 2003
- [j13]Ioannis K. Argyros:
On the Convergence and Application of Newton's Method under Weak Hölder Continuity Assumptions. Int. J. Comput. Math. 80(6): 767-780 (2003) - 2001
- [j12]Ioannis K. Argyros:
On the radius of convergence of newton's method. Int. J. Comput. Math. 77(3): 389-400 (2001) - 2000
- [j11]Ioannis K. Argyros:
Forcing sequences and inexact Newton iterates in Banach space. Appl. Math. Lett. 13(1): 77-80 (2000) - 1999
- [j10]Ioannis K. Argyros:
On the convergence of two-step methods generated by point-to-point operators. Appl. Math. Comput. 102(2-3): 165-176 (1999) - [j9]Ioannis K. Argyros:
On Newton's method under mild differentiability conditions and applications. Appl. Math. Comput. 102(2-3): 177-183 (1999) - [j8]Ioannis K. Argyros:
Convergence rates for inexact Newton-like methods at singular points and applications. Appl. Math. Comput. 102(2-3): 185-201 (1999) - [j7]Ioannis K. Argyros:
Results on Newton methods. Part 1: A unified approach for constructing perturbed Newton-like methods in Banach space and their applications. Appl. Math. Comput. 102(2-3): 203-222 (1999) - [j6]Ioannis K. Argyros:
Results on Newton methods. Part II: Perturbed Newton-like methods in generalized Banach spaces. Appl. Math. Comput. 102(2-3): 223-236 (1999) - [j5]Ioannis K. Argyros:
Relations Between Forcing Sequences and Inexact Newton Iterates in Banach Space. Computing 63(2): 131-144 (1999) - [j4]Ioannis K. Argyros:
Relations between forcing sequences and inexact newton-like iterates in banach spaceInexact newton-like iterates in banach space. Int. J. Comput. Math. 71(2): 235-246 (1999) - 1998
- [j3]Ioannis K. Argyros:
Sufficient conditions for constructing methods faster than Newton's. Appl. Math. Comput. 93(2-3): 169-181 (1998) - 1992
- [j2]Ioannis K. Argyros:
Improved error bounds for the modified secant method. Int. J. Comput. Math. 43(1-2): 99-109 (1992) - 1990
- [j1]Ioannis K. Argyros:
A mesh-independence principle for nonlinear operator equations and their discretizations under mild differentiability conditions. Computing 45(3): 265-268 (1990)
Informal and Other Publications
- 2019
- [i1]Ioannis K. Argyros, Stepan Shakhno:
Local convergence analysis of the Gauss-Newton-Kurchatov method. CoRR abs/1906.03505 (2019)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-12-02 22:26 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint