![](https://dblp.uni-trier.de./img/logo.320x120.png)
![search dblp search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
![search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
default search action
Quantum Machine Intelligence, Volume 4
Volume 4, Number 1, June 2022
- Aikaterini Gratsea
, Patrick Huembeli:
Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme. - Patrick Huembeli
, Juan Miguel Arrazola, Nathan Killoran, Masoud Mohseni, Peter Wittek:
The physics of energy-based models. - Vanda Azevedo, Carla Silva
, Inês Dutra
:
Quantum transfer learning for breast cancer detection. - Prem Kumar Singh
:
Bipolar fuzzy attribute implications. - Tak Hur
, Leeseok Kim, Daniel K. Park
:
Quantum convolutional neural network for classical data classification. - Stefano Martina
, Lorenzo Buffoni
, Stefano Gherardini
, Filippo Caruso
:
Learning the noise fingerprint of quantum devices. - Songsong Dai
:
Quantum information distance based on classical descriptions. - Ieva Cepaite
, Brian Coyle
, Elham Kashefi:
A continuous variable Born machine. - Kathleen E. Hamilton
, Emily Lynn, Raphael C. Pooser:
Mode connectivity in the loss landscape of parameterized quantum circuits. 1-14 - Yabin Zhang, David J. Gorsich, Paramsothy Jayakumar, Shravan K. Veerapaneni
:
Continuous-variable optimization with neural network quantum states. 1-8
Volume 4, Number 2, December 2022
- Stefano Mangini
, Alessia Marruzzo, Marco Piantanida, Dario Gerace
, Daniele Bajoni, Chiara Macchiavello:
Quantum neural network autoencoder and classifier applied to an industrial case study. 1-13 - Mikel Garcia de Andoin
, Javier Echanobe:
Implementable hybrid quantum ant colony optimization algorithm. 1-14 - Nicola Dalla Pozza
, Lorenzo Buffoni
, Stefano Martina
, Filippo Caruso
:
Quantum reinforcement learning: the maze problem. 1-10 - Leila Taghavi
:
Simplified quantum algorithm for the oracle identification problem. 1-7 - Martina Rossi, Luca Asproni
, Davide Caputo, Stefano Rossi, Alice Cusinato, Remo Marini, Andrea Agosti, Marco Magagnini:
Using Shor's algorithm on near term Quantum computers: a reduced version. 1-10 - Ryan LaRose, Eleanor Gilbert Rieffel, Davide Venturelli
:
Mixer-phaser Ansätze for quantum optimization with hard constraints. 1-9 - Vladimir Vargas-Calderón
, Fabio A. González, Herbert Vinck-Posada:
Optimisation-free density estimation and classification with quantum circuits. 1-9 - Alexander Geng
, Ali Moghiseh
, Claudia Redenbach
, Katja Schladitz
:
A hybrid quantum image edge detector for the NISQ era. 1-16 - Niklas Pirnay
, Anna Pappa, Jean-Pierre Seifert:
Learning classical readout quantum PUFs based on single-qubit gates. 1-10 - Taisei Nohara, Satoshi Oyama
, Itsuki Noda:
Pairwise classification using quantum support vector machine with Kronecker kernel. 1-13 - Bojan Zunkovic
:
Deep tensor networks with matrix product operators. 1-12 - Armando Bellante
, Alessandro Luongo
, Stefano Zanero
:
Quantum algorithms for SVD-based data representation and analysis. 1-23 - Alona Sakhnenko
, Corey O'Meara
, Kumar Jang Bahadur Ghosh
, Christian B. Mendl
, Giorgio Cortiana
, Juan Bernabé-Moreno
:
Hybrid classical-quantum autoencoder for anomaly detection. 1-17 - Koji Nagata
, Do Ngoc Diep, Tadao Nakamura:
Computational complexity in high-dimensional quantum computing. 1-8 - Behrooz Sepehry, Ehsan Iranmanesh, Michael P. Friedlander, Pooya Ronagh
:
Quantum algorithms for structured prediction. 1-25 - Massimiliano Incudini
, Fabio Tarocco
, Riccardo Mengoni, Alessandra Di Pierro, Antonio Mandarino
:
Computing graph edit distance on quantum devices. 1-21 - Fabio A. González
, Joseph Alejandro Gallego
, Santiago Toledo-Cortés, Vladimir Vargas-Calderón:
Learning with density matrices and random features. 1-17 - Amine Assouel, Antoine Jacquier
, Alexei Kondratyev:
A quantum generative adversarial network for distributions. 1-19 - Ryan LaRose, Eleanor Riefel, Davide Venturelli
:
Correction to: Mixer‑phaser ansätze for quantum optimization with hard constraints. 1 - Masahiro Kobayashi, Kouhei Nakaji, Naoki Yamamoto
:
Overfitting in quantum machine learning and entangling dropout. 1-9
![](https://dblp.uni-trier.de./img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.