default search action
Notre Dame Journal of Formal Logic, Volume 1
Volume 1, Numbers 1-2, 1960
- E. J. Lemmon:
An extension algebra and the modal system T. 3-12 - Thoralf Skolem:
Investigations on a comprehension axiom without negation in the defining propositional functions. 13-22 - Czeslaw Lejewski:
Studies in the axiomatic foundations of Boolean algebra. I. 23-47 - Ivo Thomas:
Independence of Faris-rejection-axioms. 48-51 - Boleslaw Sobocinski:
On the single axioms of the protothetic. I. 52-73 - Ivo Thomas:
Independence of Tarski's law in Henkin's propositional fragments. 74-78
Volume 1, Number 3, 1960
- David Kaplan, Richard Montague:
A paradox regained. 79-90 - Czeslaw Lejewski:
Studies in the axiomatic foundations of Boolean algebra. II. 91-106 - Ivo Thomas:
Functional completeness of Henkin's propositional fragments. 107-110 - Carl Lyngholm, Wolfgang Yourgrau:
A double-iteration property of Boolean functions. 111-114 - Boleslaw Sobocinski:
A simple formula equivalent to the axiom of choice. 115-117 - Robert E. Clay:
The number of moduli in n-ary relations. 118-121 - Boleslaw Sobocinski:
A note concerning the axiom of choice. 122 - G. Y. Rainick:
A formal system. 123-126
Volume 1, Number 4, 1960
- R. L. Goodstein, J. Hooley:
On recursive transcendence. 127-137 - Otto Bird:
The formalizing of the topics in mediaeval logic. 138-149 - D. L. Székely:
Die Theorie der Umgangssprache als interpretierter Kompositkalkül. 150-170 - Hugues Leblanc:
On a recent allotment of probabilities to open and closed sentences. 171-175 - E. J. Lemmon:
Errata: An extension algebra and the modal system T. 176-177 - Czeslaw Lejewski:
Errata: "Studies in the axiomatic foundations of Boolean algebra. I.". 176-177 - Boleslaw Sobocinski:
Errata: "On the single axioms of the protothetic. I.". 176-177
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.