default search action
SIAM/ASA Journal on Uncertainty Quantification, Volume 11
Volume 11, Number 1, March 2023
- Mikkel Bue Lykkegaard, Tim J. Dodwell, Colin Fox, G. Mingas, Robert Scheichl:
Multilevel Delayed Acceptance MCMC. 1-30 - Babak Maboudi Afkham, Yiqiu Dong, Per Christian Hansen:
Uncertainty Quantification of Inclusion Boundaries in the Context of X-Ray Tomography. 31-61 - Wouter Edeling:
On the Deep Active-Subspace Method. 62-90 - Juan P. Madrigal-Cianci, Fabio Nobile, Raúl Tempone:
Analysis of a Class of Multilevel Markov Chain Monte Carlo Algorithms Based on Independent Metropolis-Hastings. 91-138 - Martin Chak, Nikolas Kantas, Grigorios A. Pavliotis:
On the Generalized Langevin Equation for Simulated Annealing. 139-167 - Cédric Travelletti, David Ginsbourger, Niklas Linde:
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors. 168-198 - Christoph Schwab, Jakob Zech:
Deep Learning in High Dimension: Neural Network Expression Rates for Analytic Functions in \(\pmb{L^2(\mathbb{R}^d,\gamma_d)}\). 199-234 - Keyi Wu, Peng Chen, Omar Ghattas:
A Fast and Scalable Computational Framework for Large-Scale High-Dimensional Bayesian Optimal Experimental Design. 235-261 - Jan Glaubitz, Anne Gelb, Guohui Song:
Generalized Sparse Bayesian Learning and Application to Image Reconstruction. 262-284 - Terrence Alsup, Benjamin Peherstorfer:
Context-Aware Surrogate Modeling for Balancing Approximation and Sampling Costs in Multifidelity Importance Sampling and Bayesian Inverse Problems. 285-319 - Leon Bungert, Philipp Wacker:
Complete Deterministic Dynamics and Spectral Decomposition of the Linear Ensemble Kalman Inversion. 320-357 - Max Ehre, Rafael Flock, Martin Fußeder, Iason Papaioannou, Daniel Straub:
Certified Dimension Reduction for Bayesian Updating with the Cross-Entropy Method. 358-388
Volume 11, Number 2, June 2023
- Adrian N. Bishop, Pierre Del Moral:
Robust Kalman and Bayesian Set-Valued Filtering and Model Validation for Linear Stochastic Systems. 389-425 - Christophette Blanchet-Scalliet, Bruno Demory, Thierry Gonon, Céline Helbert:
Gaussian Process Regression on Nested Spaces. 426-451 - Fedor Goncharov, Eric Barat, Thomas Dautremer:
Nonparametric Posterior Learning for Emission Tomography. 452-479 - Maarten V. de Hoop, Nikola B. Kovachki, Nicholas H. Nelsen, Andrew M. Stuart:
Convergence Rates for Learning Linear Operators from Noisy Data. 480-513 - Baptiste Kerleguer:
Multifidelity Surrogate Modeling for Time-Series Outputs. 514-539 - Elaine T. Spiller, Robert L. Wolpert, Pablo Tierz, Taylor G. Asher:
The Zero Problem: Gaussian Process Emulators for Range-Constrained Computer Models. 540-566 - Euan A. Spence, Jared Wunsch:
Wavenumber-Explicit Parametric Holomorphy of Helmholtz Solutions in the Context of Uncertainty Quantification. 567-590 - Tim Jahn:
Noise Level Free Regularization of General Linear Inverse Problems under Unconstrained White Noise. 591-615 - Jeremy Heng, Ajay Jasra, Kody J. H. Law, Alexander Tarakanov:
On Unbiased Estimation for Discretized Models. 616-645 - Ben Mansour Dia:
A Continuation Method in Bayesian Inference. 646-681 - Yian Chen, Mihai Anitescu:
Scalable Physics-Based Maximum Likelihood Estimation Using Hierarchical Matrices. 682-725
Volume 11, Number 3, September 2023
- Prerna Patil, Hessam Babaee:
Reduced-Order Modeling with Time-Dependent Bases for PDEs with Stochastic Boundary Conditions. 727-756 - Claudia Schillings, Claudia Totzeck, Philipp Wacker:
Ensemble-Based Gradient Inference for Particle Methods in Optimization and Sampling. 757-787 - Shanyin Tong, Georg Stadler:
Large Deviation Theory-based Adaptive Importance Sampling for Rare Events in High Dimensions. 788-813 - Elliot Cartee, Antonio Farah, April Nellis, Jacob Van Hook, Alexander Vladimirsky:
Quantifying and Managing Uncertainty in Piecewise-Deterministic Markov Processes. 814-847 - Cécile Haberstich, Anthony Nouy, Guillaume Perrin:
Active Learning of Tree Tensor Networks using Optimal Least Squares. 848-876 - Christophe Audouze, Aaron Klein, Adrian Butscher, Nigel J. W. Morris, Prasanth Nair, Masayuki Yano:
Robust Level-Set-Based Topology Optimization Under Uncertainties Using Anchored ANOVA Petrov-Galerkin Method. 877-905 - Sam Allen, David Ginsbourger, Johanna Ziegel:
Evaluating Forecasts for High-Impact Events Using Transformed Kernel Scores. 906-940 - Alexey Chernov, Erik Marc Schetzke:
A Simple, Bias-free Approximation of Covariance Functions by the Multilevel Monte Carlo Method Having Nearly Optimal Complexity. 941-969 - Teo Deveney, Eike Hermann Müller, Tony Shardlow:
Deep Surrogate Accelerated Delayed-Acceptance Hamiltonian Monte Carlo for Bayesian Inference of Spatio-Temporal Heat Fluxes in Rotating Disc Systems. 970-995 - Nathaniel Pritchard, Vivak Patel:
Towards Practical Large-Scale Randomized Iterative Least Squares Solvers through Uncertainty Quantification. 996-1024 - Jasper M. Everink, Yiqiu Dong, Martin S. Andersen:
Bayesian Inference with Projected Densities. 1025-1043 - Vladimir G. Spokoiny:
Dimension Free Nonasymptotic Bounds on the Accuracy of High-Dimensional Laplace Approximation. 1044-1068 - Shurui Lv, Jun Yu, Yan Wang, Jiang Du:
Fast Calibration for Computer Models with Massive Physical Observations. 1069-1104
Volume 11, Number 4, December 2023
- Remo Kretschmann:
Are Minimizers of the Onsager-Machlup Functional Strong Posterior Modes? 1105-1138 - Johannes Milz:
Reliable Error Estimates for Optimal Control of Linear Elliptic PDEs with Random Inputs. 1139-1163 - Yao Li, Yaping Yuan:
Sensitivity Analysis of Quasi-Stationary Distributions (QSDs) of Mass-Action Systems. 1164-1194 - Hefin Lambley, Timothy John Sullivan:
An Order-Theoretic Perspective on Modes and Maximum A Posteriori Estimation in Bayesian Inverse Problems. 1195-1224 - Toni Karvonen:
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation. 1225-1257 - Vilho Halonen, Ilkka Pölönen:
Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks. 1258-1277 - Yanni Papandreou, Jon Cockayne, Mark Girolami, Andrew B. Duncan:
Theoretical Guarantees for the Statistical Finite Element Method. 1278-1307 - Sébastien Petit, Julien Bect, Paul Feliot, Emmanuel Vázquez:
Parameter Selection in Gaussian Process Interpolation: An Empirical Study of Selection Criteria. 1308-1328 - Seif Ben Bader, Helmut Harbrecht, Rolf Krause, Michael D. Multerer, Alessio Quaglino, Marc Schmidlin:
Space-time Multilevel Quadrature Methods and their Application for Cardiac Electrophysiology. 1329-1356 - Suraj Yerramilli, Akshay Iyer, Wei Chen, Daniel W. Apley:
Fully Bayesian Inference for Latent Variable Gaussian Process Models. 1357-1381
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.