![](https://dblp.uni-trier.de./img/logo.320x120.png)
![search dblp search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
![search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
default search action
Journal of Data and Information Quality, Volume 16
Volume 16, Number 1, March 2024
- Felix Naumann
:
Editorial. 1:1 - Tiziana Catarci
:
Editor-in-Chief (June 2017-November 2023) Farewell Report. 2:1-2:2
- Gianluca Demartini
, Shazia Sadiq
, Jie Yang
:
Editorial: Special Issue on Human in the Loop Data Curation. 3:1-3:2 - Stefani Tsaneva
, Marta Sabou
:
Enhancing Human-in-the-Loop Ontology Curation Results through Task Design. 4:1-4:25 - Timo Breuer
, Norbert Fuhr
, Philipp Schaer
:
Validating Synthetic Usage Data in Living Lab Environments. 5:1-5:33 - João L. M. Pereira
, Manuel J. Fonseca
, Antónia Lopes
, Helena Galhardas
:
Cleenex: Support for User Involvement during an Iterative Data Cleaning Process. 6:1-6:26
- Julian Le Deunf
, Arwa Khannoussi
, Laurent Lecornu
, Patrick Meyer
, John Puentes
:
Data Quality Assessment through a Preference Model. 7:1-7:21 - Dakshi Tharanga Kapugama Geeganage
, Moe Thandar Wynn
, Arthur H. M. ter Hofstede
:
Text2EL+: Expert Guided Event Log Enrichment Using Unstructured Text. 8:1-8:28 - Tobias Backes
, Stefan Dietze
:
Connected Components for Scaling Partial-order Blocking to Billion Entities. 9:1-9:29
- Guy-Junior Richard
, Jérôme Habonneau
, Didier Guériot
, Jean-Marc Le Caillec
:
AI Explainability and Acceptance: A Case Study for Underwater Mine Hunting. 10:1-10:20
Volume 16, Number 2, June 2024
- Na Li
, Yiyang Qi
, Chaoran Li
, Zhiming Zhao
:
Active Learning for Data Quality Control: A Survey. 11:1-11:45 - Giansalvatore Mecca
, Paolo Papotti
, Donatello Santoro
, Enzo Veltri
:
BUNNI: Learning Repair Actions in Rule-driven Data Cleaning. 12:1-12:31 - Florian Bachinger
, Lisa Ehrlinger
, Gabriel Kronberger
, Wolfram Wöß
:
Data Validation Utilizing Expert Knowledge and Shape Constraints. 13:1-13:27 - Michael Stenger
, André Bauer
, Thomas Prantl
, Robert Leppich
, Nathaniel Hudson
, Kyle Chard
, Ian T. Foster
, Samuel Kounev
:
Thinking in Categories: A Survey on Assessing the Quality for Time Series Synthesis. 14:1-14:32
Volume 16, Number 3, September 2024
- Sergei Chuprov
, Raman Zatsarenko
, Leon Reznik
, Igor Khokhlov
:
Data Quality Based Intelligent Instrument Selection with Security Integration. 15:1-15:24 - Hichem Belgacem
, Xiaochen Li
, Domenico Bianculli
, Lionel C. Briand
:
Automated anomaly detection for categorical data by repurposing a form filling recommender system. 16:1-16:28 - Heinrich Peters
, Alireza Hashemi
, James Rae
:
Generalizable Error Modeling for Human Data Annotation: Evidence From an Industry-Scale Search Data Annotation Program. 17:1-17:15
- Naif Alzahrani
, Jacek Cala
, Paolo Missier
:
Experience: A Comparative Analysis of Multivariate Time-Series Generative Models: A Case Study on Human Activity Data. 18:1-18:18
- Flavia Serra
, Verónika Peralta
, Adriana Marotta
, Patrick Marcel
:
Use of Context in Data Quality Management: A Systematic Literature Review. 19:1-19:41
Volume 16, Number 4, December 2024
- Foutse Khomh, Andreas Metzger, Phu Hong Nguyen, Sagar Sen:
Editorial: Special Issue on Software Engineering and AI for Data Quality. 20:1-20:3 - Valentina Golendukhina, Harald Foidl, Daniel Hörl, Michael Felderer:
A Catalog of Consumer IoT Device Characteristics for Data Quality Estimation. 21:1-21:25 - Edmon Begoli, Maria Mahbub, Linsey Passarella, Sudarshan Srinivasan:
A Compound Data Poisoning Technique with Significant Adversarial Effects on Transformer-based Sentiment Classification Tasks. 22:1-22:15 - Maria Gabriela Valeriano, Ana Matran-Fernandez, Carlos Roberto Veiga Kiffer, Ana Carolina Lorena:
Understanding the performance of machine learning models from data- to patient-level. 23:1-23:19 - Rui Filipe Ribeiro Jesus, Ana Rodrigues, Carlos Costa:
Unlocking AutoML: Enhancing Data with Deep Learning Algorithms for Medical Imaging. 24:1-24:17 - Hong Linh Truong, Ngoc Nhu Trang Nguyen:
TENSAI - Practical and Responsible Observability for Data Quality-aware Large-scale Analytics. 25:1-25:43
![](https://dblp.uni-trier.de./img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.