![](https://dblp.uni-trier.de./img/logo.320x120.png)
![search dblp search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
![search dblp](https://dblp.uni-trier.de./img/search.dark.16x16.png)
default search action
Journal of Approximation Theory, Volume 109
Volume 109, Number 1, March 2001
- Joerg Huesing:
Estimates for the Discrepancy of a Signed Measure Using Its Energy Norm. 1-29 - María José Cantero, Francisco Marcellán, Leandro Moral:
A Class of Nonsymmetric Orthogonal Polynomials on the Unit Circle. 30-47 - Tim N. T. Goodman, Marie-Laurence Mazure:
Blossoming beyond Extended Chebyshev Spaces. 48-81 - Joaquim Martín
, Mario Milman:
Reverse Hölder Inequalities and Approximation Spaces. 82-109 - Jacob Korevaar, Marcel A. Monterie:
Fekete Potentials and Polynomials for Continua. 110-125 - Gerhard Schmeisser:
Orthogonal Expansion of Real Polynomials, Location of Zeros, and an L2 Inequality. 126-147 - Arthur A. Danielyan, Edward B. Saff:
An Extension of E. Bishop's Localization Theorem. 148-156
Volume 109, Number 2, April 2001
- José M. Rodríguez:
The Multiplication Operator in Sobolev Spaces with Respect to Measures. 157-197 - Christian Elbert:
Strong Asymptotics of the Generating Polynomials of the Stirling Numbers of the Second Kind. 198-217 - Christian Elbert:
Weak Asymptotics for the Generating Polynomials of the Stirling Numbers of the Second Kind. 218-228 - José A. Adell, Carmen Sangüesa:
Upper Estimates in Direct Inequalities for Bernstein-Type Operators. 229-241 - Xiao-Ming Zeng, Fuhua Cheng:
On the Rates of Approximation of Bernstein Type Operators. 242-256 - Bernardo de la Calle Ysern
, Guillermo López Lagomasino
:
Convergence of Multipoint Padé-type Approximants. 257-278 - Clément Frappier:
A Unified Calculus Using the Generalized Bernoulli Polynomials. 279-313
![](https://dblp.uni-trier.de./img/cog.dark.24x24.png)
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.