


default search action
SAIA 2024: Cologne, Germany
- Rebekka Görge
, Elena Haedecke
, Maximilian Poretschkin
, Anna Schmitz
:
Symposium on Scaling AI Assessments, SAIA 2024, September 30 to October 1, 2024, Cologne, Germany. OASIcs 126, Schloss Dagstuhl - Leibniz-Zentrum für Informatik 2025, ISBN 978-3-95977-357-7 - Front Matter, Table of Contents, Preface, Conference Organization. 0:i-0:xii
- Afef Awadid, Boris Robert:
On Assessing ML Model Robustness: A Methodological Framework (Academic Track). 1:1-1:10 - Marc-André Zöller, Anastasiia Iurshina, Ines Röder:
Trustworthy Generative AI for Financial Services (Practitioner Track). 2:1-2:5 - Ronald Schnitzer, Andreas Hapfelmeier, Sonja Zillner:
EAM Diagrams - A Framework to Systematically Describe AI Systems for Effective AI Risk Assessment (Academic Track). 3:1-3:16 - Daniel Weimer, Andreas Gensch, Kilian Koller:
Scaling of End-To-End Governance Risk Assessments for AI Systems (Practitioner Track). 4:1-4:5 - Joachim Iden, Felix Zwarg, Bouthaina Abdou:
Risk Analysis Technique for the Evaluation of AI Technologies with Respect to Directly and Indirectly Affected Entities (Practitioner Track). 5:1-5:6 - Dominik Eisl, Bastian Bernhardt, Lukas Höhndorf, Rafal Kulaga:
SafeAI-Kit: A Software Toolbox to Evaluate AI Systems with a Focus on Uncertainty Quantification (Practitioner Track). 6:1-6:3 - Christoph Tobias Wirth, Mihai Maftei, Rosa Esther Martín-Peña, Iris Merget:
Towards Trusted AI: A Blueprint for Ethics Assessment in Practice (Academic Track). 7:1-7:19 - Adrian Seeliger:
AI Readiness of Standards: Bridging Traditional Norms with Modern Technologies (Practitioner Track). 8:1-8:6 - Sergio Genovesi:
Introducing an AI Governance Framework in Financial Organizations. Best Practices in Implementing the EU AI Act (Practitioner Track). 9:1-9:7 - Sergio Genovesi, Martin Haimerl, Iris Merget, Samantha Morgaine Prange, Otto Obert, Susanna Wolf, Jens R. Ziehn:
Evaluating Dimensions of AI Transparency: A Comparative Study of Standards, Guidelines, and the EU AI Act (Academic Track). 10:1-10:17 - Oliver Müller, Veronika Lazar, Matthias Heck:
Transparency of AI Systems (Practitioner Track). 11:1-11:7 - Elisabeth Pachl, Fabian Langer, Thora Markert, Jeanette Miriam Lorenz:
A View on Vulnerabilites: The Security Challenges of XAI (Academic Track). 12:1-12:23 - Benjamin Frész, Danilo Brajovic, Marco F. Huber:
AI Certification: Empirical Investigations into Possible Cul-De-Sacs and Ways Forward (Practitioner Track). 13:1-13:4 - Susanne Kuch, Raoul Kirmes:
AI Certification: An Accreditation Perspective (Practitioner Track). 14:1-14:7 - Carmen Frischknecht-Gruber, Philipp Denzel, Monika Reif, Yann Billeter, Stefan Brunner, Oliver Forster, Frank-Peter Schilling, Joanna Weng, Ricardo Chavarriaga:
AI Assessment in Practice: Implementing a Certification Scheme for AI Trustworthiness (Academic Track). 15:1-15:18

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.