default search action
RecSys 2024: Bari, Italy - Challenge
- Proceedings of the Recommender Systems Challenge 2024, RecSysChallenge 2024, Bari, Italy, October 14-18, 2024. ACM 2024, ISBN 979-8-4007-1127-5
- Johannes Kruse, Kasper Lindskow, Saikishore Kalloori, Marco Polignano, Claudio Pomo, Abhishek Srivastava, Anshuk Uppal, Michael Riis Andersen, Jes Frellsen:
EB-NeRD a large-scale dataset for news recommendation. 1-11 - Antonio Ferrara, Marco Valentini, Paolo Masciullo, Antonio De Candia, Davide Abbattista, Riccardo Fusco, Claudio Pomo, Vito Walter Anelli, Giovanni Maria Biancofiore, Ludovico Boratto, Fedelucio Narducci:
DIVAN: Deep-Interest Virality-Aware Network to Exploit Temporal Dynamics in News Recommendation. 12-16 - Andrea Alari, Lorenzo Campana, Federico Giuseppe Ciliberto, Saverio Maggese, Carlo Sgaravatti, Francesco Zanella, Andrea Pisani, Maurizio Ferrari Dacrema:
Exploiting Contextual Normalizations and Article Endorsement for News Recommendation. 17-21 - Lucien Heitz, Sanne Vrijenhoek, Oana Inel:
Recommendations for the Recommenders: Reflections on Prioritizing Diversity in the RecSys Challenge. 22-26 - Tetsuro Sugiura, Yosuke Yamagishi, Yodai Kishimoto:
Leveraging LightGBM Ranker for Efficient Large-Scale News Recommendation Systems. 27-31 - Qi Zhang, Jieming Zhu, Jiansheng Sun, Guohao Cai, Ruining Yu, Bangzheng He, Liangbi Li:
Enhancing News Recommendation with Real-Time Feedback and Generative Sequence Modeling. 32-36 - Tomomu Iwai, Akihiro Tomita, Tomoyuki Arai, Hiroki Ogawa, Takuma Saito:
Harnessing Temporal Dynamics and Content: An Ensemble of Gradient Boosting Machines for News Recommendation. 37-41 - Kazuki Fujikawa, Naoki Murakami, Yuki Sugawara:
Enhancing News Recommendation with Transformers and Ensemble Learning. 42-47 - Juan Manuel Rodriguez, Antonela Tommasel:
Leveraging User History with Transformers for News Clicking: The DArgk Approach. 48-52 - Taofeng Xue, Zhimin Lin, Zijian Zhang, Linsen Guo, Haoru Chen, Mengjiao Bao, Peng Yan:
Large Scale Hierarchical User Interest Modeling for Click-through Rate Prediction. 53-57
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.