


default search action
9th AVEC@MM 2019: Nice, France
- Fabien Ringeval, Björn W. Schuller, Michel F. Valstar, Nicholas Cummins, Roddy Cowie, Maja Pantic:
Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, AVEC@MM 2019, Nice, France, October 21-25, 2019. ACM 2019, ISBN 978-1-4503-6913-8
Keynote
- Véronique Aubergé:
The Socio-Affective Robot: Aimed to Understand Human Links? 1
Introduction
- Fabien Ringeval, Björn W. Schuller
, Michel F. Valstar, Nicholas Cummins
, Roddy Cowie, Leili Tavabi, Maximilian Schmitt, Sina Alisamir, Shahin Amiriparian
, Eva-Maria Meßner, Siyang Song, Shuo Liu, Ziping Zhao, Adria Mallol-Ragolta, Zhao Ren, Mohammad Soleymani, Maja Pantic:
AVEC 2019 Workshop and Challenge: State-of-Mind, Detecting Depression with AI, and Cross-Cultural Affect Recognition. 3-12
State-of-Mind Sub-challenge
- Yan Li, Tao Yang, Le Yang, Xiaohan Xia, Dongmei Jiang, Hichem Sahli:
A Multimodal Framework for State of Mind Assessment with Sentiment Pre-classification. 13-18
Cross-cultural Emotion Sub-challenge
- Haifeng Chen, Yifan Deng, Shiwen Cheng, Yixuan Wang, Dongmei Jiang, Hichem Sahli:
Efficient Spatial Temporal Convolutional Features for Audiovisual Continuous Affect Recognition. 19-26 - Heysem Kaya
, Dmitrii Fedotov, Denis Dresvyanskiy
, Metehan Doyran
, Danila Mamontov, Maxim Markitantov, Alkim Almila Akdag Salah
, Evrim Kavcar, Alexey Karpov
, Albert Ali Salah:
Predicting Depression and Emotions in the Cross-roads of Cultures, Para-linguistics, and Non-linguistics. 27-35 - Jinming Zhao, Ruichen Li, Jingjun Liang, Shizhe Chen, Qin Jin:
Adversarial Domain Adaption for Multi-Cultural Dimensional Emotion Recognition in Dyadic Interactions. 37-45
Detecting Depression with AI Sub-challenge
- Larry Zhang, Joshua Driscol, Xiaotong Chen, Reza Hosseini Ghomi
:
Evaluating Acoustic and Linguistic Features of Detecting Depression Sub-Challenge Dataset. 47-53 - Mariana Rodrigues Makiuchi, Tifani Warnita, Kuniaki Uto, Koichi Shinoda:
Multimodal Fusion of BERT-CNN and Gated CNN Representations for Depression Detection. 55-63 - Shi Yin, Cong Liang, Heyan Ding, Shangfei Wang:
A Multi-Modal Hierarchical Recurrent Neural Network for Depression Detection. 65-71 - Weiquan Fan, Zhiwei He, Xiaofen Xing, Bolun Cai, Weirui Lu:
Multi-modality Depression Detection via Multi-scale Temporal Dilated CNNs. 73-80 - Anupama Ray
, Siddharth Kumar, Rutvik Reddy, Prerana Mukherjee, Ritu Garg:
Multi-level Attention Network using Text, Audio and Video for Depression Prediction. 81-88

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.