default search action
Medical Imaging: Image Perception, Observer Performance, and Technology Assessment 2019: San Diego, CA, USA
- Robert M. Nishikawa, Frank W. Samuelson:
Medical Imaging 2019: Image Perception, Observer Performance, and Technology Assessment, San Diego, California, United States, 16-21 February 2019. SPIE Proceedings 10952, SPIE 2019
Image Perception
- Ziba Gandomkar, Ernest U. Ekpo, Sarah J. Lewis, Karla K. Evans, Kriscia A. Tapia, Phuong Dung Trieu, Jeremy M. Wolfe, Patrick C. Brennan:
Does the strength of the gist signal predict the difficulty of breast cancer detection in usual presentation and reporting mechanisms? 1095203 - Nicholas M. D'Ardenne, Robert M. Nishikawa, Margarita L. Zuley, Chia-Chien Wu, Jeremy M. Wolfe:
Oculomotor behaviour of radiologists reading digital breast tomosynthesis (DBT). 1095204
Model Observers I
- Daniel Gomez-Cardona, Shuai Leng, Christopher P. Favazza, Beth A. Schueler, Kenneth A. Fetterly:
Automatic strategy for CHO channel reduction in x-ray angiography systems. 1095205 - Craig K. Abbey, Frank W. Samuelson, Rongping Zeng, John M. Boone, Miguel P. Eckstein, Kyle J. Myers:
Template models for forced-localization tasks. 1095206 - Jason L. Granstedt, Weimin Zhou, Mark A. Anastasio:
Autoencoder embedding of task-specific information. 1095207 - Weimin Zhou, Hua Li, Mark A. Anastasio:
Learning the Hotelling observer for SKE detection tasks by use of supervised learning methods. 1095208 - Weimin Zhou, Mark A. Anastasio:
Learning the ideal observer for joint detection and localization tasks by use of convolutional neural networks. 1095209
Model Observers II
- Angel R. Pineda:
Laguerre-Gauss and sparse difference-of-Gaussians observer models for signal detection using constrained reconstruction in magnetic resonance imaging. 109520A - Howard C. Gifford, Zohreh Karbaschi:
Tests of projection and reconstruction domain equivalence for a feature-driven model observer. 109520B - Christiana Balta, Ioannis Sechopoulos, Ramona W. Bouwman, Mireille J. M. Broeders, Nico Karssemeijer, Ruben E. van Engen, Wouter J. H. Veldkamp:
New difference of Gaussian channel-sets for the channelized Hotelling observer? 109520C - Miguel A. Lago, Craig K. Abbey, Miguel P. Eckstein:
A foveated channelized Hotelling search model predicts dissociations in human performance in 2D and 3D images. 109520D - W. Murphy, Premkumar Elangovan, Mark D. Halling-Brown, Emma Lewis, K. C. Young, David R. Dance, Kevin Wells:
Using transfer learning for a deep learning model observer. 109520E
Technology Impact and Assessment
- Stephen L. Hillis, Badera Al Mohammad, Patrick C. Brennan:
Estimating latent reader-performance variability using the Obuchowski-Rockette method. 109520F - Weijie Chen, Zhipeng Huang, Frank W. Samuelson, Lucas Tcheuko:
Adaptive sample size re-estimation in MRMC studies. 109520G - Ramy Mohammed Abdlaty, Lilian Doerwald-Munoz, Joseph Hayward, Qiyin Fang:
Radiation therapy induced-erythema: comparison of spectroscopic diffuse reflectance measurements and visual assessment. 109520H - Elizabeth A. Krupinski:
Impact of patient photos on detection accuracy, decision confidence, and eye-tracking parameters in chest and abdomen images with tubes and lines. 109520I - Ethan Du-Crow, Lucy M. Warren, Susan M. Astley, Johan Hulleman:
Is there a safety-net effect with computer-aided detection (CAD)? 109520J
Deep Learning Applications
- Hao Gong, Andrew Walther, Qiyuan Hu, Chi Wan Koo, Edwin A. Takahashi, David L. Levin, Tucker F. Johnson, Megan J. Hora, Shuai Leng, Joel G. Fletcher, Cynthia H. McCollough, Lifeng Yu:
Correlation between a deep-learning-based model observer and human observer for a realistic lung nodule localization task in chest CT. 109520K - Gihun Kim, Minah Han, Hyunjung Shim, Jongduk Baek:
Implementation of an ideal observer model using convolutional neural network for breast CT images. 109520L - Weimin Zhou, Sayantan Bhadra, Frank J. Brooks, Mark A. Anastasio:
Learning stochastic object model from noisy imaging measurements using AmbientGANs. 109520M - Ziba Gandomkar, Moayyad E. Suleiman, Delgermaa Demchig, Patrick C. Brennan, Mark F. McEntee:
BI-RADS density categorization using deep neural networks. 109520N - Nicole Kaiser, Andreas Fieselmann, Sulaiman Vesal, Nishant Ravikumar, Ludwig Ritschl, Steffen Kappler, Andreas K. Maier:
Mammographic breast density classification using a deep neural network: assessment on the basis of inter-observer variability. 109520O
Observer Performance
- J. Michael O'Connor, Manish Sharma, Anitha Singareddy:
Development of methods to evaluate probability of reviewer's assessment bias in blinded independent central review (BICR) imaging studies. 109520P - Manish Sharma, J. Michael O'Connor, Anitha Singareddy:
Reader Disagreement Index: a better measure of overall review quality monitoring in an oncology trial compared to adjudication rate. 109520Q - Lucas R. Borges, Paulo Mazzoncini de Azevedo Marques, Marcelo Andrade da Costa Vieira:
A 2-AFC study to validate artificially inserted microcalcification clusters in digital mammography. 109520R - Leng Dong, Jacquie Jenkins, Eleanor Cornford, Yan Chen:
The relationship between breast screening readers' real-life performance and their associated performance on the PERFORMS scheme (Conference Presentation). 109520S - Jennifer Anne Cooper, David Jenkinson, Sian Taylor-Phillips:
Blinding of the second reader in mammography screening: impact on behaviour and cancer detection. 109520T
Observer Performance in Breast Imaging
- Alistair Mackenzie, Emma L. Thomson, Premkumar Elangovan, Chantal Van Ongeval, Lesley Cockmartin, Lucy M. Warren, Rosalind M. Given-Wilson, Louise S. Wilkinson, Matthew G. Wallis, David R. Dance, Kenneth C. Young:
An observer study to assess the detection of calcification clusters using 2D mammography, digital breast tomosynthesis, and synthetic 2D imaging. 109520U - Christiana Balta, Ioannis Sechopoulos, Wouter J. H. Veldkamp, Ruben E. van Engen, Ingrid S. Reiser:
2D single-slice vs. 3D viewing of simulated tomosynthesis images of a small-scale breast tissue model. 109520V - Lucy M. Warren, Mark D. Halling-Brown, Louise S. Wilkinson, Rosalind M. Given-Wilson, Rita McAvinchey, Matthew G. Wallis, David R. Dance, K. C. Young:
Changes in breast density. 109520W - Morteza Heidari, Seyedehnafiseh Mirniaharikandehei, Abolfazl Zargari Khuzani, Wei Qian, Yuchen Qiu, Bin Zheng:
Assessment of a quantitative mammographic imaging marker for breast cancer risk prediction. 109520X
Poster Session
- Badera Al Mohammad, Stephen L. Hillis, Warren M. Reed, Charbel Saade, Patrick C. Brennan:
Comparing senior residents performance to radiologists in lung cancer detection. 109520Y - Qi Gong, Qin Li, Marios A. Gavrielides, Nicholas Petrick:
Data transformations for variance stabilization in the statistical assessment of quantitative imaging biomarkers. 109520Z - Koji Shimizu, Gakuto Aoyama, Mizuho Nishio, Masahiro Yakami, Takeshi Kubo, Yutaka Emoto, Tatsuya Ito, Tomohiro Kuroda, Hiroyoshi Isoda:
A case study regarding clinical performance evaluation method of medical device software for approval. 1095210 - Lukas Trunz, D. J. Eschelman, C. F. Gonsalves, R. Adamo, J. K. Dave:
In-vitro and in-vivo comparison of radiation dose estimates between state-of-the-art interventional fluoroscopy systems. 1095211 - Eleni Michalopoulou, Alastair G. Gale, Yan Chen:
Prostate Imaging Self-assessment and Mentoring (PRISM): a prototype self-assessment scheme. 1095212 - Min Zhang, Jia Yang Wang, Lei Zhang, Jun Feng, Yi Lv:
Deep residual-network-based quality assessment for SD-OCT retinal images: preliminary study. 1095214 - Marc Jason Pomeroy, Matthew A. Barish, Perry J. Pickhardt, Jie Yang, Zhengrong Liang:
A statistical analysis of oral tagging in CT colonography and its impact on flat polyp detection and characterization. 1095215 - Suneeta Mall, Elizabeth A. Krupinski, Claudia Mello-Thoms:
Missed cancer and visual search of mammograms: what feature based machine-learning can tell us that deep-convolution learning cannot. 1095216
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.