


default search action
24th MICCAI 2021: Strasbourg, France - Part VIII
- Marleen de Bruijne
, Philippe C. Cattin
, Stéphane Cotin
, Nicolas Padoy
, Stefanie Speidel
, Yefeng Zheng
, Caroline Essert
:
Medical Image Computing and Computer Assisted Intervention - MICCAI 2021 - 24th International Conference, Strasbourg, France, September 27 - October 1, 2021, Proceedings, Part VIII. Lecture Notes in Computer Science 12908, Springer 2021, ISBN 978-3-030-87236-6
Clinical Applications - Ophthalmology
- Lie Ju
, Xin Wang, Lin Wang
, Tongliang Liu
, Xin Zhao, Tom Drummond, Dwarikanath Mahapatra, Zongyuan Ge:
Relational Subsets Knowledge Distillation for Long-Tailed Retinal Diseases Recognition. 3-12 - Shuai Yu, Yonghuai Liu
, Jiong Zhang, Jianyang Xie, Yalin Zheng, Jiang Liu
, Yitian Zhao:
Cross-Domain Depth Estimation Network for 3D Vessel Reconstruction in OCT Angiography. 13-23 - Yifan Yang, Huihui Fang, Qing Du, Fei Li, Xiulan Zhang, Mingkui Tan, Yanwu Xu:
Distinguishing Differences Matters: Focal Contrastive Network for Peripheral Anterior Synechiae Recognition. 24-33 - Sharif Amit Kamran
, Khondker Fariha Hossain, Alireza Tavakkoli, Stewart Lee Zuckerbrod, Kenton M. Sanders, Salah A. Baker:
RV-GAN: Segmenting Retinal Vascular Structure in Fundus Photographs Using a Novel Multi-scale Generative Adversarial Network. 34-44 - Shuang Yu, Kai Ma, Qi Bi
, Cheng Bian
, Munan Ning, Nanjun He, Yuexiang Li, Hanruo Liu, Yefeng Zheng:
MIL-VT: Multiple Instance Learning Enhanced Vision Transformer for Fundus Image Classification. 45-54 - Qi Bi
, Shuang Yu, Wei Ji
, Cheng Bian
, Lijun Gong, Hanruo Liu, Kai Ma, Yefeng Zheng:
Local-Global Dual Perception Based Deep Multiple Instance Learning for Retinal Disease Classification. 55-64 - Li Lin
, Zhonghua Wang, Jiewei Wu, Yijin Huang, Junyan Lyu
, Pujin Cheng
, Jiong Wu
, Xiaoying Tang:
BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework for Segmenting and Classifying OCTA Images. 65-75 - Negin Ghamsarian
, Mario Taschwer, Doris Putzgruber-Adamitsch, Stephanie Sarny, Yosuf El-Shabrawi, Klaus Schoeffmann:
LensID: A CNN-RNN-Based Framework Towards Lens Irregularity Detection in Cataract Surgery Videos. 76-86 - Pujin Cheng, Li Lin, Yijin Huang, Junyan Lyu
, Xiaoying Tang:
I-SECRET: Importance-Guided Fundus Image Enhancement via Semi-supervised Contrastive Constraining. 87-96 - Siwei Mai, Qian Li, Qi Zhao, Mingchen Gao:
Few-Shot Transfer Learning for Hereditary Retinal Diseases Recognition. 97-107 - Hong Liu, Dong Wei, Donghuan Lu, Yuexiang Li, Kai Ma, Liansheng Wang, Yefeng Zheng:
Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D Networks for 3D Coherent Layer Segmentation of Retina OCT Images. 108-118
Computational (Integrative) Pathology
- Zhiyang Gao, Jun Shi, Jun Wang:
GQ-GCN: Group Quadratic Graph Convolutional Network for Classification of Histopathological Images. 121-131 - Zeyu Gao
, Jiangbo Shi, Xianli Zhang, Yang Li, Haichuan Zhang, Jialun Wu, Chunbao Wang, Deyu Meng, Chen Li:
Nuclei Grading of Clear Cell Renal Cell Carcinoma in Histopathological Image by Composite High-Resolution Network. 132-142 - Akash Parvatikar
, Om Choudhary, Arvind Ramanathan, Rebekah Jenkins, Olga Navolotskaia, Gloria Carter, Akif Burak Tosun, Jeffrey L. Fine, S. Chakra Chennubhotla:
Prototypical Models for Classifying High-Risk Atypical Breast Lesions. 143-152 - Jiangpeng Yan, Hanbo Chen, Kang Wang, Yan Ji, Yuyao Zhu, Jingjing Li, Dong Xie, Zhe Xu, Junzhou Huang
, Shuqun Cheng, Xiu Li, Jianhua Yao
:
Hierarchical Attention Guided Framework for Multi-resolution Collaborative Whole Slide Image Segmentation. 153-163 - Pingjun Chen
, Muhammad Aminu, Siba El Hussein, Joseph D. Khoury, Jia Wu
:
Hierarchical Phenotyping and Graph Modeling of Spatial Architecture in Lymphoid Neoplasms. 164-174 - S. Shailja
, Angela Zhang
, B. S. Manjunath
:
A Computational Geometry Approach for Modeling Neuronal Fiber Pathways. 175-185 - Xiyue Wang
, Sen Yang
, Jun Zhang, Minghui Wang, Jing Zhang, Junzhou Huang
, Wei Yang, Xiao Han
:
TransPath: Transformer-Based Self-supervised Learning for Histopathological Image Classification. 186-195 - Hanbo Chen, Kang Wang, Yuyao Zhu, Jiangpeng Yan, Yan Ji, Jingjing Li, Dong Xie, Junzhou Huang
, Shuqun Cheng, Jianhua Yao
:
From Pixel to Whole Slide: Automatic Detection of Microvascular Invasion in Hepatocellular Carcinoma on Histopathological Image via Cascaded Networks. 196-205 - Hang Li, Fan Yang, Yu Zhao, Xiaohan Xing, Jun Zhang, Mingxuan Gao, Junzhou Huang
, Liansheng Wang, Jianhua Yao
:
DT-MIL: Deformable Transformer for Multi-instance Learning on Histopathological Image. 206-216 - Marta Wojciechowska
, Stefano Malacrino
, Natalia Garcia Martin
, Hamid Fehri
, Jens Rittscher
:
Early Detection of Liver Fibrosis Using Graph Convolutional Networks. 217-226 - Zichen Wang, Jiayun Li, Zhufeng Pan, Wenyuan Li, Anthony E. Sisk, Huihui Ye, William Speier
, Corey W. Arnold:
Hierarchical Graph Pathomic Network for Progression Free Survival Prediction. 227-237 - Jessica S. L. Vidmark
, Estefania Hernandez-Martin
, Terence D. Sanger
:
Increasing Consistency of Evoked Response in Thalamic Nuclei During Repetitive Burst Stimulation of Peripheral Nerve in Humans. 238-247 - Marvin Lerousseau, Marion Classe, Enzo Battistella, Théo Estienne, Théophraste Henry, Amaury Leroy, Roger Sun
, Maria Vakalopoulou, Jean-Yves Scoazec, Eric Deutsch, Nikos Paragios:
Weakly Supervised Pan-Cancer Segmentation Tool. 248-256 - Sophia J. Wagner, Nadieh Khalili, Raghav Sharma, Melanie Boxberg, Carsten Marr, Walter de Back, Tingying Peng:
Structure-Preserving Multi-domain Stain Color Augmentation Using Style-Transfer with Disentangled Representations. 257-266 - Yuqing Liu, Weiwen Wang
, Chuan-Xian Ren, Dao-Qing Dai:
MetaCon: Meta Contrastive Learning for Microsatellite Instability Detection. 267-276 - Jiatong Cai, Chenglu Zhu
, Can Cui, Honglin Li, Tong Wu, Shichuan Zhang, Lin Yang:
Generalizing Nucleus Recognition Model in Multi-source Ki67 Immunohistochemistry Stained Images via Domain-Specific Pruning. 277-287 - Neda Zamanitajeddin, Mostafa Jahanifar, Nasir M. Rajpoot:
Cells are Actors: Social Network Analysis with Classical ML for SOTA Histology Image Classification. 288-298 - Zeyu Gao
, Bangyang Hong, Xianli Zhang, Yang Li, Chang Jia, Jialun Wu, Chunbao Wang, Deyu Meng, Chen Li:
Instance-Based Vision Transformer for Subtyping of Papillary Renal Cell Carcinoma in Histopathological Image. 299-308 - Jiahui Li, Wen Chen, Xiaodi Huang, Shuang Yang, Zhiqiang Hu, Qi Duan, Dimitris N. Metaxas, Hongsheng Li
, Shaoting Zhang:
Hybrid Supervision Learning for Pathology Whole Slide Image Classification. 309-318 - Pietro Antonio Cicalese, Syed Asad Rizvi
, Victor Wang, Sai Patibandla, Pengyu Yuan, Samira Zare, Katharina Moos, Ibrahim Batal, Marian Clahsen-van Groningen, Candice Roufosse, Jan U. Becker, Chandra Mohan, Hien Van Nguyen:
MorphSet: Improving Renal Histopathology Case Assessment Through Learned Prognostic Vectors. 319-328 - Andriy Myronenko
, Ziyue Xu
, Dong Yang
, Holger R. Roth
, Daguang Xu
:
Accounting for Dependencies in Deep Learning Based Multiple Instance Learning for Whole Slide Imaging. 329-338 - Richard J. Chen, Ming Y. Lu, Muhammad Shaban, Chengkuan Chen, Tiffany Y. Chen, Drew F. K. Williamson, Faisal Mahmood:
Whole Slide Images are 2D Point Clouds: Context-Aware Survival Prediction Using Patch-Based Graph Convolutional Networks. 339-349 - Shivam Kalra, Mohammed Adnan, Sobhan Hemati, Taher Dehkharghanian, Shahryar Rahnamayan, Hamid R. Tizhoosh:
Pay Attention with Focus: A Novel Learning Scheme for Classification of Whole Slide Images. 350-359
Modalities - Microscopy
- Stanislav Lukyanenko, Won-Dong Jang, Donglai Wei, Robbert Struyven, Yoon Kim, Brian D. Leahy, Helen Y. Yang, Alexander M. Rush, Dalit Ben-Yosef, Daniel Needleman, Hanspeter Pfister
:
Developmental Stage Classification of Embryos Using Two-Stream Neural Network with Linear-Chain Conditional Random Field. 363-372 - Kazuya Nishimura, Hyeonwoo Cho
, Ryoma Bise:
Semi-supervised Cell Detection in Time-Lapse Images Using Temporal Consistency. 373-383 - Hyeonwoo Cho
, Kazuya Nishimura, Kazuhide Watanabe, Ryoma Bise:
Cell Detection in Domain Shift Problem Using Pseudo-Cell-Position Heatmap. 384-394 - Christian Schiffer
, Stefan Harmeling, Katrin Amunts
, Timo Dickscheid
:
2D Histology Meets 3D Topology: Cytoarchitectonic Brain Mapping with Graph Neural Networks. 395-404 - Zuhui Wang, Zhaozheng Yin
:
Annotation-Efficient Cell Counting. 405-414 - Luojie Huang
, Gregory N. McKay, Nicholas J. Durr
:
A Deep Learning Bidirectional Temporal Tracking Algorithm for Automated Blood Cell Counting from Non-invasive Capillaroscopy Videos. 415-424 - Kazuma Fujii, Daiki Suehiro, Kazuya Nishimura, Ryoma Bise:
Cell Detection from Imperfect Annotation by Pseudo Label Selection Using P-classification. 425-434 - Xiaoyu Liu, Yueyi Zhang, Zhiwei Xiong, Chang Chen, Wei Huang, Xuejin Chen, Feng Wu:
Learning Neuron Stitching for Connectomics. 435-444 - Jinghan Huang, Yiqing Shen
, Dinggang Shen, Jing Ke
:
CA2.5-Net Nuclei Segmentation Framework with a Microscopy Cell Benchmark Collection. 445-454 - Canfeng Lin, Huisi Wu, Zhenkun Wen, Jing Qin
:
Automated Malaria Cells Detection from Blood Smears Under Severe Class Imbalance via Importance-Aware Balanced Group Softmax. 455-465 - Bovey Y. Rao
, Alexis M. Peterson, Elena K. Kandror, Stephanie Herrlinger, Attila Losonczy, Liam Paninski, Abbas H. Rizvi, Erdem Varol:
Non-parametric Vignetting Correction for Sparse Spatial Transcriptomics Images. 466-475 - Christoph Reich
, Tim Prangemeier, Christian Wildner
, Heinz Koeppl:
Multi-StyleGAN: Towards Image-Based Simulation of Time-Lapse Live-Cell Microscopy. 476-486 - Yuexiang Li, Nanjun He, Sixiang Peng, Kai Ma, Yefeng Zheng:
Deep Reinforcement Exemplar Learning for Annotation Refinement. 487-496
Modalities - Histopathology
- Zhi Wang, Xiaoya Zhu, Lei Su, Gang Meng, Junsheng Zhang, Ao Li, Minghui Wang:
Instance-Aware Feature Alignment for Cross-Domain Cell Nuclei Detection in Histopathology Images. 499-508 - Zipei Zhao, Fengqian Pang, Zhiwen Liu, Chuyang Ye:
Positive-Unlabeled Learning for Cell Detection in Histopathology Images with Incomplete Annotations. 509-518 - Viswesh Krishna, Anirudh Joshi, Damir Vrabac, Philip L. Bulterys, Eric Yang, Sebastian Fernandez-Pol
, Andrew Y. Ng, Pranav Rajpurkar:
GloFlow: Whole Slide Image Stitching from Video Using Optical Flow and Global Image Alignment. 519-528 - Hang Li, Fan Yang, Xiaohan Xing, Yu Zhao, Jun Zhang, Yueping Liu, Mengxue Han, Junzhou Huang
, Liansheng Wang, Jianhua Yao
:
Multi-modal Multi-instance Learning Using Weakly Correlated Histopathological Images and Tabular Clinical Information. 529-539 - Trinh Thi Le Vuong
, Kyungeun Kim, Boram Song, Jin Tae Kwak:
Ranking Loss: A Ranking-Based Deep Neural Network for Colorectal Cancer Grading in Pathology Images. 540-549 - Hongyi Duanmu
, Shristi Bhattarai, Hongxiao Li, Chia Cheng Cheng, Fusheng Wang
, George Teodoro, Emiel A. M. Janssen, Keerthi Gogineni, Preeti Subhedar, Ritu Aneja, Jun Kong:
Spatial Attention-Based Deep Learning System for Breast Cancer Pathological Complete Response Prediction with Serial Histopathology Images in Multiple Stains. 550-560 - Ziwang Huang, Hua Chai, Ruoqi Wang, Haitao Wang, Yuedong Yang
, Hejun Wu:
Integration of Patch Features Through Self-supervised Learning and Transformer for Survival Analysis on Whole Slide Images. 561-570 - Jing Ke
, Yiqing Shen
, Xiaoyao Liang
, Dinggang Shen:
Contrastive Learning Based Stain Normalization Across Multiple Tumor in Histopathology. 571-580 - Cong Cong
, Sidong Liu
, Antonio Di Ieva
, Maurice Pagnucco, Shlomo Berkovsky
, Yang Song
:
Semi-supervised Adversarial Learning for Stain Normalisation in Histopathology Images. 581-591 - Lei Fan
, Arcot Sowmya, Erik Meijering, Yang Song
:
Learning Visual Features by Colorization for Slide-Consistent Survival Prediction from Whole Slide Images. 592-601 - Adalberto Claudio Quiros, Nicolas Coudray, Anna Yeaton, Wisuwat Sunhem, Roderick Murray-Smith, Aristotelis Tsirigos, Ke Yuan:
Adversarial Learning of Cancer Tissue Representations. 602-612 - Jiarong Ye, Yuan Xue
, Peter Liu, Richard Zaino, Keith C. Cheng, Xiaolei Huang
:
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis. 613-623
Modalities - Ultrasound
- Yixiong Chen, Chunhui Zhang, Li Liu, Cheng Feng, Changfeng Dong, Yongfang Luo, Xiang Wan:
USCL: Pretraining Deep Ultrasound Image Diagnosis Model Through Video Contrastive Representation Learning. 627-637 - Peng Wan, Chunrui Liu, Fang Chen, Jing Qin
, Daoqiang Zhang:
Identifying Quantitative and Explanatory Tumor Indexes from Dynamic Contrast Enhanced Ultrasound. 638-647 - Ruiheng Chang, Dong Wang, Haiyan Guo, Jia Ding, Liwei Wang:
Weakly-Supervised Ultrasound Video Segmentation with Minimal Annotations. 648-658 - Devavrat Tomar, Lin Zhang, Tiziano Portenier, Orcun Goksel:
Content-Preserving Unpaired Translation from Simulated to Realistic Ultrasound Images. 659-669 - Cheng Zhao, Richard Droste, Lior Drukker, Aris T. Papageorghiou
, J. Alison Noble:
Visual-Assisted Probe Movement Guidance for Obstetric Ultrasound Scanning Using Landmark Retrieval. 670-679 - Golara Javadi, Samareh Samadi, Sharareh Bayat, Samira Sojoudi, Antonio Hurtado, Silvia D. Chang, Peter C. Black, Parvin Mousavi, Purang Abolmaesumi:
Training Deep Networks for Prostate Cancer Diagnosis Using Coarse Histopathological Labels. 680-689 - Maria Tirindelli, Christine Eilers, Walter Simson, Magdalini Paschali
, Mohammad Farid Azampour
, Nassir Navab:
Rethinking Ultrasound Augmentation: A Physics-Inspired Approach. 690-700

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.