


default search action
Deep-Breath@MICCAI 2024: Marrakesh, Morocco
- Ritse M. Mann
, Tianyu Zhang
, Tao Tan
, Luyi Han
, Danial Truhn
, Shuo Li
, Yuan Gao
, Shannon Doyle
, Robert Martí Marly
, Jakob Nikolas Kather
, Katja Pinker-Domenig
, Shandong Wu, Geert Litjens
:
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - First Deep Breast Workshop, Deep-Breath 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings. Lecture Notes in Computer Science 15451, Springer 2025, ISBN 978-3-031-77788-2 - Abdulganiyu Jimoh, Fatima Zahrae Nakach, Ali Idri, Ikram Chairi:
Evaluation of Bagging Ensembles on Multimodal Data for Breast Cancer Diagnosis. 1-12 - Tajamul Ashraf, Tisha Madame:
HF-Fed: Hierarchical Based Customized Federated Learning Framework for X-Ray Imaging. 13-22 - Jinhong Song, Xiao Yang, Xinglong Liang, Jiaju Huang, Junqiang Ma, Yue Sun, Wuman Luo, SengPeng Mok, Ying Wang, Tao Tan:
DuEU-Net: Dual Encoder UNet with Modality-Agnostic Training for PET-CT Multi-modal Organ and Lesion Segmentation. 23-31 - Jarek van Dijk, Luyi Han, Luuk Balkenende, Nika Rasoolzadeh, Karine R. Morche, Tianyu Zhang, Ritse M. Mann:
One for All: UNET Training on Single-Sequence Masks for Multi-sequence Breast MRI Segmentation. 32-41 - Nika Rasoolzadeh, Tianyu Zhang, Yuan Gao, Jarek van Dijk, Qiuhui Yang, Tao Tan, Ritse M. Mann:
Multimodal Breast MRI Language-Image Pretraining (MLIP): An Exploration of a Breast MRI Foundation Model. 42-53 - Richard Osuala, Daniel Lang, Anneliese Riess, Georgios Kaissis, Zuzanna Szafranowska, Grzegorz Skorupko, Oliver Díaz, Julia A. Schnabel, Karim Lekadir:
Enhancing the Utility of Privacy-Preserving Cancer Classification Using Synthetic Data. 54-64 - Zhikai Yang, Mehdi Astaraki, Örjan Smedby, Rodrigo Moreno:
Efficient Generation of Synthetic Breast CT Slices By Combining Generative and Super-Resolution Models. 65-74 - Solha Kang, Wesley De Neve, François Rameau, Utku Ozbulak:
Exploring Patient Data Requirements in Training Effective AI Models for MRI-Based Breast Cancer Classification. 75-84 - Hannes Schreiter, Jessica Eberle, Lorenz A. Kapsner, Dominique Hadler, Sabine Ohlmeyer, Ramona Erber, Julius Emons, Frederik B. Laun, Michael Uder, Evelyn Wenkel, Sebastian Bickelhaupt, Andrzej Liebert:
Virtual Dynamic Contrast Enhanced Breast MRI Using 2D U-Net Architectures. 85-95 - Oladosu Oladimeji, Hamail Ayaz, Ian McLoughlin, Saritha Unnikrishnan:
Optimizing BI-RADS 4 Lesion Assessment Using Lightweight Convolutional Neural Network with CBAM in Contrast Enhanced Mammography. 96-106 - Toygar Tanyel, Nurper Denizoglu, Mustafa Ege Seker, Deniz Alis, Esma Cerekci, Ercan Karaarslan, Erkin Aribal, Ilkay Öksüz:
Mammographic Breast Positioning Assessment via Deep Learning. 107-116 - Nuno Freitas, Carlos Veloso, Carlos Mavioso, Maria João Cardoso, Hélder P. Oliveira, Jaime S. Cardoso:
Endpoint Detection in Breast Images for Automatic Classification of Breast Cancer Aesthetic Results. 117-126 - Paul Terrassin, Mickael Tardy, Hassan Alhajj, Nathan Lauzeral, Nicolas Normand:
Thick Slices for Optimal Digital Breast Tomosynthesis Classification With Deep-Learning. 127-136 - Mohammad Hossein Zolfagharnasab, Nuno Freitas, Tiago Gonçalves, Eduard Bonci, Carlos Mavioso, Maria João Cardoso, Hélder P. Oliveira, Jaime S. Cardoso:
Predicting Aesthetic Outcomes in Breast Cancer Surgery: A Multimodal Retrieval Approach. 137-147 - Ali Nasiri-Sarvi, Mahdi S. Hosseini, Hassan Rivaz:
Vision Mamba for Classification of Breast Ultrasound Images. 148-158 - Lauren Jimenez-Martin, Carlos Hernández-Pérez, Verónica Vilaplana:
Breast Cancer Molecular Subtyping from H&E Whole Slide Images Using Foundation Models and Transformers. 159-168 - Hadeel Awwad, Eloy García, Robert Martí:
Graph Neural Networks for Modelling Breast Biomechanical Compression. 169-180 - Eloy García, Diego García Pinto, Victor Sánchez-Lara, Ricardo Montoya-del-Angel, Robert Martí:
A Generative Adversarial Approach to Remove Moiré Artifacts in Dark-Field and Phase-Contrast X-Ray Images. 181-190 - Melika Pooyan, Hadeel Awwad, Eloy García, Robert Martí:
MRI Breast Tissue Segmentation Using nnU-Net for Biomechanical Modeling. 191-201 - Lidia Garrucho, Eve Delegue, Richard Osuala, Dimitri Kessler, Kaisar Kushibar, Oliver Díaz, Karim Lekadir, Laura Igual:
Fat-Suppressed Breast MRI Synthesis for Domain Adaptation in Tumour Segmentation. 202-211 - Rasoul Sharifian, Sabrina Madad Zadeh, Nicolas Bourdel, Alexia Giro, Wissam Marraoui, Christophe Pomel, Adrien Bartoli:
Guiding Breast Conservative Surgery by Augmented Reality from Preoperative MRI: Initial System Design and Retrospective Trials. 212-220 - Ricardo Montoya-del-Angel, Marawan Elbatel, Jorge Patricio Castillo-Lopez, Yolanda Villaseñor-Navarro, María-Ester Brandan, Robert Marti:
ELK: Enhanced Learning Through Cross-Modal Knowledge Transfer for Lesion Detection in Limited-Sample Contrast-Enhanced Mammography Datasets. 221-231 - Degan Hao, Dooman Arefan, Margarita L. Zuley, Wendie A. Berg, Shandong Wu:
Safe Breast Cancer Diagnosis Resilient to Mammographic Adversarial Samples. 232-243

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.