


default search action
ITU Kaleidoscope 2018: Santa Fe, Argentina
- 2018 ITU Kaleidoscope: Machine Learning for a 5G Future, Santa Fe, Argentina, November 26-28, 2018. IEEE 2018, ISBN 978-92-61-26921-0
- Smriti Parsheera:
A Gendered Perspective on Artificial Intelligence. 1-7 - Ved P. Kafle
, Yusuke Fukushima, Pedro Martinez-Julia
, Takaya Miyazawa:
Consideration On Automation of 5G Network Slicing with Machine Learning. 1-8 - Dhananjay Kumar, Narmathaa Logganathan, Ved P. Kafle
:
Double Sarsa Based Machine Learning to Improve Quality of Video Streaming over HTTP through Wireless Networks. 1-8 - Gyu Myoung Lee, Tai-Won Um, Jun Kyun Choi:
AI as a Microservice (AIMS) over 5G Networks. 1-7 - Stephen S. Mwanje, Christian Mannweiler:
Towards Cognitive Autonomous Networks in 5G. 1-8 - Charm Malhotra, Vinod Kotwaf, Surahhi Dalai:
Ethical Framework for Machine Learning. 1-8 - Dhananjay Kumar, Govinda Raj Sampath Sarala:
Optical Flow Based Learning Approach for Abnormal Crowd Activity Detection with Motion Descriptor Map. 1-7 - Juan Pablo Martin, Bruno Marengo, Juan Pablo Prina, Martin Gabriel Riolfo:
Message Collision Identification Approach Using Machine Learning. 1-6 - Fabrizio De Vita
, Dario Bruneo, Antonio Puliafito, Giovanni Nardini
, Antonio Virdis, Giovanni Stea
:
A Deep Reinforcement Learning Approach For Data Migration in Multi-Access Edge Computing. 1-8 - Fabio López-Pires, Benjamín Barán
:
Machine Learning Opportunities In Cloud Computing Data Center Management for 5G Services. 1-6 - Ruben Martinez-Sandoval, Sebastian Canovas-Carrasco
, Antonio-Javier García-Sánchez
, Joan García-Haro:
Smart Usage of Multiple Rat in IOT-Oriented 5G Networks: A Reinforcement Learning Approach. 1-8 - Eva Ibarrola
, Mark Davis, Camille Voisin, Ciara Close, Leire Cristobo
:
A Machine Learning Management Model for QoE Enhancement in Next-Generation Wireless Ecosystems. 1-8 - Luis Tuberquia-David, Cesar Augusto Hernandez Suarez:
Multifractal Modeling of the Radio Electric Spectrum Applied in Cognitive Radio Networks. 1-6 - Edgar Tello-Leal
, Jorge Roa, Mariano Rubiolo, Ulises Manuel Ramirez-Alcocer
:
Predicting Activities in Business Processes with LSTM Recurrent Neural Networks. 1-7 - Janne Ali-Tolppa, Szilard Kocsis, Benedek Schultz, Levente Bodrog, Marton Kajo:
Self-Healing and Resilience in Future 5G Cognitive Autonomous Networks. 1-8 - Pamela Ferrari Lezaun, Gustavo Olivieri:
Undeclared Constructions: A Government's Support Depp Learning Solution for Automatic Change Detection. 1-7 - Emilia Gibellini, Claudio E. Righetti:
Unsupervised Learning for Detection of Leakage from the HFC Network. 1-8

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.