


default search action
HuMob-Challengei@SIGSPATIAL 2024: Atlanta, GA, USA
- Takahiro Yabe, Kota Tsubouchi, Toru Shimizu:
Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Human Mobility Prediction Challenge, HuMob2024, Atlanta, GA, USA, 29 October 2024 - 1 November 2024. ACM 2024, ISBN 979-8-4007-1150-3 - Peizhi Tang
, Chuang Yang
, Tong Xing
, Xiaohang Xu
, Renhe Jiang
, Kaoru Sezaki
:
Instruction-Tuning Llama-3-8B Excels in City-Scale Mobility Prediction. 1-4 - Haru Terashima
, Shun Takagi
, Naoki Tamura
, Kazuyuki Shoji
, Tahera Hossain
, Shin Katayama
, Kenta Urano
, Takuro Yonezawa
, Nobuo Kawaguchi
:
Time-series Stay Frequency for Multi-City Next Location Prediction using Multiple BERTs. 5-9 - Haoyu He
, Haozheng Luo
, Qi R. Wang
:
ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction. 10-15 - Hitoshi Ishikawa
:
Human Mobility Prediction using Day of the Week probability. 16-18 - Jonas Gunkel
, Andrea Tundis
, Max Mühlhäuser:
The Story of Mobility: Combining State Space Models and Transformers for Multi-Step Trajectory Prediction. 19-24 - An-Syu Li
, Ling-Huan Meng
, Yu-Ling Zhong
, Yi-Chung Chen
, Tomoya Kawakami
:
Using the Temporal-Trajectory-based K Nearest Neighbor Algorithm to Predict Human Mobility Patterns. 25-28 - Masahiro Suzuki
:
Human Mobility Prediction using Personalized Spatiotemporal Models. 29-32 - Meisaku Suzuki
, Yusuke Fukushima
, Ryo Koyama
, Hayato Kumagai
, Tomohiro Mimura
, Keiichi Ochiai
:
Cross-city-aware Spatiotemporal BERT. 33-36 - Yuki Imai
, Takuya Tokumoto
, Kohei Koyama
, Tomoko Ochi
, Shogo Imai
, Tomoyuki Mori
, Tomohiro Nakao
, Kenta Maruyama
:
Urban Human Mobility Prediction Using Support Vector Regression: A Classical Data-Driven Approach. 37-41 - Cuauhtemoc Anda
, Ning Cao
, Shuai Liu
, Shaowei Ying
, Gao Cong
:
Personalized and On-device Trajectory Mobility Prediction. 42-45 - Keiji Yasuda
, Shoko Nukaya
, Naoki Horie
, Daisuke Kamisaka
:
Multiple Systems Combination to Improve Human Mobility Prediction. 46-49 - Yike Sun
:
Trajectory Prediction Using Random Forests with Time Decay and Periodic Features. 50-54 - JangHyeon Lee
, Yao-Yi Chiang
:
CrossBag: A Bag of Tricks for Cross-City Mobility Prediction. 55-59 - Ruochen Kong
, Hossein Amiri
, Yueyang Liu
, Lance Kennedy
, Misha Gupta
, Joon-Seok Kim
, Andreas Züfle
:
Human Mobility Challenge: Are Transformers Effective for Human Mobility Prediction? 60-63

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.