


default search action
HuMob-Challengei@SIGSPATIAL 2023: Hamburg, Germany
- Proceedings of the 1st International Workshop on the Human Mobility Prediction Challenge, HuMob-Challenge 2023, Hamburg, Germany, 13 November 2023. ACM 2023
- Haru Terashima
, Naoki Tamura
, Kazuyuki Shoji
, Shin Katayama
, Kenta Urano
, Takuro Yonezawa
, Nobuo Kawaguchi
:
Human Mobility Prediction Challenge: Next Location Prediction using Spatiotemporal BERT. 1-6 - Akihiro Kobayashi
, Naoto Takeda
, Yudai Yamazaki
, Daisuke Kamisaka
:
Modeling and generating human mobility trajectories using transformer with day encoding. 7-10 - Aivin V. Solatorio
:
GeoFormer: Predicting Human Mobility using Generative Pre-trained Transformer (GPT). 11-15 - Xiaogang Guo
, Guangyue Li
, Zhixing Chen
, Huazu Zhang
, Yulin Ding
, Jinghan Wang
, Zilong Zhao
, Luliang Tang
:
Large-Scale Human Mobility Prediction Based on Periodic Attenuation and Local Feature Match. 16-21 - Masahiro Suzuki
, Shomu Furuta
, Yusuke Fukazawa
:
Personalized human mobility prediction for HuMob challenge. 22-25 - Ryo Koyama
, Meisaku Suzuki
, Yusuke Nakamura
, Tomohiro Mimura
, Shin Ishiguro
:
Estimating future human trajectories from sparse time series data. 26-31 - Chenglong Wang
, Zhicheng Deng
:
Multi-perspective Spatiotemporal Context-aware Neural Networks for Human Mobility Prediction. 32-36 - Taehoon Kim
, Kyoung-Sook Kim
, Akiyoshi Matono
:
Cell-Level Trajectory Prediction Using Time-embedded Encoder-Decoder Network. 37-40 - Haoyu He
, Xinhua Wu
, Qi R. Wang
:
Forecasting Urban Mobility using Sparse Data: A Gradient Boosted Fusion Tree Approach. 41-46 - Jiaxin Du
, Xinyue Ye
:
Batch and negative sampling design for human mobility graph neural network training. 47-50

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.